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A MECHANISM OF MAGNETIC HYSTERESIS IN
HETEROGENEOUS ALLOYS

By E. C. STONER, F.R.S. ano E. P. WOHLFARTH
Physics Department, University of Leeds

(Received 24 July 1947)

The Becker-Kersten treatment of domain boundary movements is widely applicable in the inter-
pretation of magnetization curves, but it does not account satisfactorily for the higher coercivities
obtained, for example, in permanent magnet alloys. It is suggested that in many ferromagnetic
materials there may occur ‘particles’ (this term including atomic segregates or ‘islands’ in alloys),
distinct in magnetic character from the general matrix, and below the critical size, depending on
shape, for which domain boundary formation is energetically possible. For such single-domain
particles, change of magnetization can take place only by rotation of the magnetization vector, .
As the field changes continuously, the resolved magnetization, I, may change discontinuously at
critical values, H, of the field. The character of the magnetization curves depends on the degree
of magnetic anisotropy of the particle, and on the orientation of ‘easy axes’ with respect to the
field. The magnetic anisotropy may arise from the shape of the particle, from magneto-crystalline
effects, and from strain.

A detailed quantitative treatment is given of the effect of shape anisotropy when the particles
have the form of ellipsoids of revolution (§§ 2, 3, 4), and a less detailed treatment for the general
ellipsoidal form (§ 5). For the first it is convenient to use the non-dimensional parameter %, such
that & = H|(| N,— N,|) I, N, and N, being the demagnetization coefficients along the polar and
equatorial axes. The results are presented in tables and diagrams giving the variation with % of I,/1;.
For the special limiting form of the oblate spheroid there is no hysteresis. For the prolate spheroid,
as the orientation angle, 0, varies from 0 to 90°, the cyclic magnetization curves change from a
rectangular form with |%;| =1, to a linear non-hysteretic form, with an interesting sequence of
intermediate forms. Exact expressions are obtained for the dependence of %, on @, and curves for
random distribution are computed.

All the numerical results are applicable when the anisotropy is due to longltudmal stress, when
h = HI,/3Ao, where A is the saturation magnetostriction coefficient, and o the stress. The results
also apply to magneto-crystalline anisotropy in the important and representative case in which
there is a unique axis of easy magnetization as for hexagonal cobalt. Estimates are made of the
magnitude of the effect of the various types of anisotropy. For iron the maximum coercivities, for
-1 the most favourable orientation, due to the magneto-crystalline and strain effects are about 400
and 600 respectively. These values are exceeded by those due to the shape effect in prolate spheroids
if the dimensional ratio, m, is greater than 1-1; for m = 10, the corresponding value would be about
10,000 (§ 7).

A fairly precise estimate is made of the lower limit for the equatorial diameter of a particle in
the form of a prolate spheroid below which boundary formation cannot occur. As m varies from 1
(the sphere) to 10, this varies from 1-5 to 6-1 x 10~ for iron, and from 6-2 to 25 x 10~ for nickel (§ 6).

A discussion is given (§ 7) of the application of these results to (¢) non-ferromagnetic metals and
alloys containing ferromagnetic ‘impurities’, (b) powder magnets, (¢) high coercivity alloys of the
dispersion hardening type. In connexion with (¢) the possible bearing on the effects of cooling in
a magnetic field is indicated.
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1. INTRODUCTION

Since about 1930 considerable progress has been made in the understanding of the behaviour
of ferromagnetics in low and moderate fields. This is mainly due to the development of an
interpretative scheme, to which many have contributed from both the experimental and
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600 E. C. STONER AND E. P. WOHLFARTH ON A MECHANISM

theoretical sides, in which change of magnetization is associated with movement of boundary
walls between regions, or domains, in which the magnetization is in different directions. In
each domain the absolute value of the intensity of magnetization remains equal to the
quasi-saturation value appropriate to the temperature. In this paper, consideration is given
to an entirely different mechanism of change of magnetization which may be physically
relevant to the behaviour of heterogeneous alloys in which a more strongly ferromagnetic
phase is finely dispersed in a less strongly ferromagnetic matrix. The particular interest of
this mechanism is that it can account, in a simple and unforced way, for very high coercivity
values. The process envisaged, even in alloys in which it may be predominant, will usually
be accompanied by processes involving the movement of domain boundaries, and in those
alloys in which it cannot be of major importance, it may none the less be contributory to
the magnetic behaviour. For these reasons it is appropriate to indicate the essentials of the
theory of the boundary movement process, and to draw attention to its limitations. This is
perhaps the more desirable in that it seems to be widely supposed that the behaviour of
ferromagnetics in low and moderate fields, and in particular hysteresis effects, can, in
principle, be explained exclusively in terms of the boundary movement process, while at
the same time there is often misunderstanding about some of the necessary assumptions in
the theoretical treatment. Many of the leading ideas are due to Becker, who has given, with
Doéring, a comprehensive account of the general theory of ‘technical’ magnetization curves
in the book Ferromagnetismus (1939) ; fuller details, and references to the earlier original papers,
may be found in this book.

(1) The boundary movement process

Boundary energy. The energy associated with a domain boundary is dependent jointly on
the interchange interaction and the magneto-crystalline, or magneto-elastic anisotropy in
the region where the boundary occurs. If the effective width of the boundary is such as to
minimize the energy, it may be shown that the energy per unit area, 7, is given by

y = aa(JOY, (1-1)

where « is the lattice constant, J a measure of the interchange interaction energy per unit
volume, C, with the dimensions of energy density, or stress, a measure of the anisotropy,
and ¢, a numerical factor, appropriate to the precise conditions (depending, for example,
on the angle, most commonly 90° or 180°, between the directions of magnetization on the
two sides of the domain boundary) and depending on the manner in which J and C are
specified. The calculation of C in the general case would be very difficult, but a simple
representative expression is obtainable for a specimen subjected to a uniform tension, o,
of a material whose (saturation) magnetostriction coefficient, 4, is independent of direction
and whose magneto-crystalline anisotropy is negligibly small. In this case, the order of

magnitude of C is given by
C = Ao. (1-2)

For cubic crystals, the dependence of the magneto-crystalline energy, E,, on the direction
of magnetization is given approximately by

E, = K(a}a3+-adod+ajaf), (1-3)
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 601

where «;, a,, ; are the direction cosines of [; with respect to the cubic axes. If the strain
anisotropy is negligible, the order of magnitude of C'is given by

C=K, (1-4)

where K’ is the difference between the maximum and minimum values of £, (e.g. K’ = K/3
with the expression (1-3)). The forms (1-2) and (1-4) are appropriate for Ao > K, and 1o <K,
respectively. (As to orders of magnitude it may be noted that for nickel and iron the magneto-
elastic effect becomes comparable with the magneto-crystalline effect for values of ¢ of
about 4 and 80kg.mm."2 respectively.)

Effect of stress variations. Whether or not the strain energy predominates over the crystal
energy, the variation of the boundary energy per unit area as it moves parallel to itself will
depend primarily on the variation of internal stress, having the character of a tension or
compression, in the material. It is mainly on this basis that the theory of domain boundary
movement has been developed, particularly, in the present connexion, by Kersten (1938),
following on earlier work by Kondorsky (1937). In the absence of a field a boundary will
occupy a position for which the energy, y, is a minimum. In an applied field the boundary
will move to a new equilibrium position for which the sum of the field energy (—H - I, per
unit volume) and the boundary energy is a minimum. If, for example, the central plane of
the boundary is in the yz plane at ¥ = 0, and, outside the boundary region, /, is parallel to
the field for x positive, and antiparallel for x negative, the equilibrium position will be

such that 2HI, = dy/dx. (1-5)

As H increases the change in magnetization associated with the boundary movement will
be reversible until the field attains a value H; for which the boundary reaches a position at
which the energy gradient is a maximum. At this value, namely

Hy = §(dy/dx) max. /Lo (1-6)

the boundary will move spontaneously (i.e. without further increase of field) and irreversibly
to a new position of equilibrium, the process corresponding to a Barkhausen jump. In many
cases it is reasonable to associate the position variation of y with the presence of localized
internal stress, and to relate (dy/dx) ... With the amplitude and form of the internal stress
variations. Kersten has considered the effect of various types of stress distribution, and

obtains the result H, = py(Aa,/I), (1-7)

where o, is the internal stress amplitude (the difference from the mean stress, and so effec-
tively the value of the internal stress where it has a maximum, when there is no applied
stress), and p, a numerical factor depending on the distribution. Denoting the effective
width of a transition zone by §, and the effective width of the stress “hump’ by /, Kersten
finds that p, is proportional to /! for <!, and to /0 for >/, and that for d~1, p, reaches
its maximum value of order unity.

The coercivity, H,, is an appropriate average of values of H, throughout the material,
and cannot be estimated in any precise way. The maximum value of the coercivity can,
however, be estimated approximately as

(Ho)max. =3 (A0/L,). (1-8)

74-2

max.
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By plausible and not too specialized assumptions about the internal stresses in ferromagnetics
under various conditions, as dependent on thermal and mechanical treatment and on the
presence of heterogeneously dispersed foreign materials, a comprehensive qualitative co-
ordination can be made of such magnetic characteristics as initial permeability and coercivity
for a wide variety of materials.

Boundary area effects. In the treatment, outlined above, of the effect of stress variations, it
has usually been tacitly assumed that the movement of a domain boundary is not accom-
panied by any appreciable change in its surface area. Any such change, however, is neces-
sarily accompanied by a change in boundary energy, even in the absence of stress inhomo-
geneities. This effect has recently been considered by Kersten (1943 4), who concludes that
it may be of predominant importance in ferromagnetics containing relatively small pro-
portions of foreign, non-ferromagnetic, bodies, or impurities, as do many of the technically
important ferromagnetic materials. A boundary between domains of the ferromagnetic
matrix may pass through, or include within itself, impurity particles, which do not con-
tribute to the boundary energy. For a given gross area of a boundary, the energy will be
a maximum when no impurity particles are included. By idealizing the impurity particles
as spherical and uniformly distributed, estimates can be made of the increase of boundary
energy in the movement of a boundary from a zero field equilibrium position, in which the
central plane of the boundary passes through a maximum number of impurity particles,
and expressions obtained for both initial permeability and coercivity, in terms of the con-
centration of the impurity, and the ratio of the mean particle diameter, d, to the effective
thickness, d, of the boundary wall. For d> 4, Kersten obtains, among other relations, as an
approximate expression for the coercivity,

H, = ¢(K'[L) (0/d) o3, (1-9)

where ¢, = 687t=5, and « is the volume concentration of the impurity. For d<4, (§/d) in
(1-9) is replaced by (d/20). It is shown by Kersten that the experimental results on annealed
carbon iron are covered very satisfactorily by (1-9) with values for d which are in reasonable
agreement with those estimated for the cementite particles from metallographical studies.
A fuller discussion of the application of the treatment to the interpretation of the magnetic
properties of various ferromagnetic materials is given in a doctorate dissertation (Kersten
1043 b).

Limitations of the boundary movement treatment. 'The most direct evidence for the effect of
stress on boundary movement, and indeed, for the physical occurrence of the boundary
movement process, is derived from experiments on large Barkhausen discontinuities in
specimens (wires) under uniform tension. The quantitative applicability of the basic ideas
to the interpretation of the effect of uniform stress on magnetization curves has been
abundantly confirmed. Uncertainties arise, however, in the extension of these ideas to the
explanation of the low and moderate field behaviour of (unstressed) materials generally in
terms of localized internal stress variations. By postulating a particular type of variation,
a qualitative co-ordination of various magnetic characteristics of a particular material can,
indeed, be obtained ; but there is, in general, no independent evidence that the actual internal
stress variations are, in fact, of the type required to account for the magnetic behaviour.
It cannot be too strongly emphasized that the variations required are not of the type corre-
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sponding to local fluctuations of density, such as might be associated with variations of
stress having the character of ‘hydrostatic’ pressure, but are variations in spacing such as
would arise from variations in tension along a particular direction.

For well-annealed materials containing small amounts of ‘impurities’ the interpretation
of the magnetic properties in terms of changes in the effective area of domain boundaries,
as suggested by Kersten in his later work, seems very convincing, and the stress variation
mechanism, here highly improbable, need not be invoked. As Kersten points out, this latter
mechanism would be expected to be of importance primarily for cold worked materials,
to which the general theory has been applied with the greatest success. It may be noted
that the magnitude of the stress (that is of ¢; in (1-8) and in related expressions for initial
permeability) required to account for the magnetic characteristics of such materials is of
the order 10kg.mm.=2.

For materials of very high coercivity (say H,>500), such as the newer permanent magnet
alloys, the stress variation mechanism might at first sight seem very plausible, for many of
these materials are hard and brittle, characteristics which may be associated with a state
ofhigh localized internal strain. The minimum value of the internal stress required to account
for the observed coercivity as estimated from (1-8), is, however, in some cases about
200 kg.mm. "2, which is of the same order as the breaking stress. Although such high values
may not be ‘impossible’ the assumption of variations in internal stress (tension) of this
magnitude over distances of a few tens of atoms must at present be regarded as somewhat
speculative. Moreover, some of the high coercivity alloys are malleable and ductile, which
is hardly compatible with large internal stress variations. It seems, therefore, very im-
probable that the magnetic behaviour of materials of very high coercivity is to be accounted
for solely in terms of the effect of internal stress variations on the movement of domain
boundaries. The boundary area, or ‘foreign body’ effect, may be of major importance in
some of the older magnet alloys with coercivities of the order of 50 (such as tungsten and
chromium steels), but it can hardly account for coercivities more than ten times as great,
as becomes clear on inserting the most favourable numerical values in (1-9).

In alloys containing only small amounts of ferromagnetic material, in some cases simply
as a ferromagnetic ‘impurity’, a relatively high coercivity is sometimes found. (More
detailed reference to the experimental results is made in §7.) For materials of this type a
general explanation of the magnetic properties cannot be given in terms of boundary move-
ments, for the volume of the particles of the dispersed ferromagnetic phase may be too small
for the formation of a domain boundary to be energetically possible.

Although, then, the hysteretic properties of ferromagnetic materials are probably to be
accounted for mainly in terms of factors affecting domain boundary movement, the examples
just mentioned suggest that processes other than boundary movement may occur, and in
some cases be of predominant importance. One such process is considered in detail in this
paper.

(ii) The rotation process in single domains

In ordinary materials the boundary movement process, by itself, would bring the specimen
to a state in which the magnetization in each region is directed along one of the easiest
directions of magnetization (as determined by the state of strain and crystal orientation in
the region) in a sense which gives the maximum resultant magnetization in the field direction.
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It is accompanied by, and followed in higher fields by, a process in which the magnetization
vector for the region rotates from the easy direction towards the field direction. In a hetero-
geneous alloy in which the more ferromagnetic particles are separated by a less ferromagnetic
matrix, the particles may be small enough to constitute a single domain in which boundary
formation cannot occur. (The necessary conditions are considered in §6.) The rotation
process alone can then take place, and, as the field is increased, discontinuous as well as
continuous changes may occur in the resolved magnetization in the field direction. The
course of the changes, that is the form of the [, H curve for the particle, depends on its
anisotropy. If the particleis spherical, the determining factors will be the magneto-crystalline
and strain anisotropy. It may easily be shown that the maximum value of the critical field
for a discontinuous change would then be of the order K'/I, or As,/I,, the first giving values
of about 100 (putting K’ = 10%, I, = 103), and the second, even with improbably large
tensional stress (say ¢ = 200 kg.mm.2) about 500. More precise estimates are given in § 7.

The effect of shape anisotropy may be very much greater. Apart from any magneto-
crystalline or strain anisotropy, the energy associated with the uniform magnetization of
the particle to the quasi-saturation value will depend on the direction of the magnetization
vector owing to the directional dependence of the demagnetizing field. For a particle in the
form of a prolate spheroid, for example, the energy is greater for magnetization along an
equatorial axis than along the polar axis by an amount (N, — N,) I§ per unit volume, where
N, and N, are the demagnetization coefficients along the two directions. As will be shown
in detail below (8§82, 4), in a gradually changing applied field discontinuous changes in the
direction of the magnetization may occur at critical values which depend on the orientation
of the ellipsoidal particle in the field. The critical field (which corresponds roughly to a
value of H,) may have a value as high as (N,—N,) /,. The limiting value, for elongated
particles (N, 0), is 27/, corresponding, for particles of iron (, = 1700) dispersed in a
non-ferromagnetic matrix, to a coercivity value of many thousands. This case is an extreme
one, but even for a nearly spherical particle with a dimensional ratio as low as 1-1 the
coeflicient in place of 27 is approximately 0-47, which still corresponds to a coercivity of
several hundreds. In view of the interesting possibilities suggested by such rough estimates
of orders of magnitude, it seemed desirable to carry out detailed calculations of the depend-
ence on field of the resolved magnetization of single domain ellipsoidal particles, and also
on the behaviour of an assembly of such particles with random orientation. The results of
these calculations are presented in this paper. The particles are idealized as ellipsoidal in
order to make the mathematical treatment tractable. There is, in fact, no other form
offering a practical possibility of combining generality with numerical precision. Uniform
magnetization is in general possible only for bodies bounded by surfaces of the second degree.
Only in that case can a demagnetization factor be uniquely defined, and the demagnetization
relations be given in a relatively simple form which is independent of the magnetic character-
istics of the material. Any apparent artificiality is mitigated by the fact that the general
ellipsoidal form covers, as an approximation, almost the whole variety of possible shapes for
the physical particles, or segregates, which are likely to be of physical interest.

Detailed calculations have been made for particles in the form of spheroids, prolate and
oblate. The range of particle shapes covered in this way is from a plate or disk at one extreme
to a thin rod or needle at the other. No useful purpose would be served by carrying out the
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very heavy calculations which would be required in dealing with particles of general
ellipsoidal form, with three unequal axes; the general character of the results which would
be obtained is sufficiently clear from those for ellipsoids of revolution. The oblate spheroid
is a special limiting case for which, although discontinuities in magnetization may occur,
there is no hysteresis. Most of the numerical results can be derived fairly simply from those
for the prolate spheroid. The general treatment is given in § 2, the computational procedure
is outlined in §3, and the numerical results for the prolate spheroid are presented in § 4.
The oblate spheroid and the general ellipsoid are briefly dealt with in § 5. The conditions
necessary for a particle to consist of a single domain are considered in § 6. In §7, it is shown
that, with a suitable modification in the physical interpretation of the non-dimensional
parameters used, the numerical results obtained for shape anisotropy of single domain
particles are directly applicable to strain and magneto-crystalline anisotropy; and the
possible physical bearing of the results as a whole is discussed with reference to various types
of ferromagnetic materials.

The general line of inquiry was first embarked upon in 1939, and some preliminary
calculations were then made. The work had to be almost entirely abandoned during the
war period, and little more than vague references to it have been published (Stoner 1940,
1944, 1945). Systematic work on the problem was resumed at the beginning of 1946.

2. THE FIELD DEPENDENCE OF THE DIRECTION OF MAGNETIZATION
OF A UNIFORMLY MAGNETIZED ELLIPSOID

General

The formal problem to be treated is that of determining the equilibrium direction or
directions of magnetization of an ellipsoid whose magnetization is uniform and of constant
absolute magnitude as dependent on the magnitude of an applied field and on its direction
relative to the principal axes of the ellipsoid. Since there may be more than one direction of
magnetization for which, for certain field ranges, the energy is a minimum, it is also necessary
to consider the course of the change as the field is changed continuously from a value for
which the magnetization direction is uniquely determined. Physically, the assumption of
a constant intensity of magnetization, I, means that the case treated is that in which the
magnitude, as distinct from the direction, of the magnetization is determined essentially
by interchange interaction effects, compared with which the effect of an applied field is
negligible; and the assumption of uniformity means that the case treated is that in which
the shape and size of the ellipsoid are such that domain boundary formation is precluded.

For the general ellipsoid the energy per unit volume associated with the demagnetizing

field is By = 33N, a2+ Nyalp 1 Nyal?), (2:1)

where a;, a5, «; are the direction cosines of I, with respect to the principal axes, denoted by
1, 2, 3, of the ellipsoid, and A}, N,, N, are the demagnetization coefficients along these axes.

It may be noted that N,+N,+ N, — dn. (2-2)
The energy associated with the applied field is
E, = —HI,cos ¢, (2-3)
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where ¢ is the angle between H and . The total energy, apart from constant terms under
the conditions assumed, is the sum of £, and Ej,. For a specified field in a given direction
with respect to the ellipsoid axes, the energy may be expressed as a function of two variables,
and equations for the directions of magnetization corresponding to energy minima may be
obtained by standard methods, as outlined in § 5. The labour entailed in obtaining numerical
solutions of these equations to cover the A range (in magnitude and direction) effectively
would, however, be out of all proportion to the physical interest or value of the results. The
physical essentials become clear from a treatment of the two special forms of the general
ellipsoid, the prolate and the oblate spheroid. These two forms are very dissimilar in their
magnetic behaviour, but the numerical results for one form can be derived without difficulty
from those for the other, so it is sufficient to consider in detail only the prolate spheroid.

For the prolate spheroid (polar axis, ¢, equatorial axis, ) it may be shown (see §5) that
the equilibrium (minimum energy) directions of magnetization lie in the plane defined by
the directions of the field and of the polar axis of the ellipsoid. In this plane, let ¢ be the
angle between the positive direction of H and the polar axis, ¢ the angle H, I, and  the angle
between the polar axis and /; (see figure 1), so that

¢ =0-+9. (2:4)

Ficure 1. Symbols.

The equation (2-1) then reduces to

By, = H3(N, cos? -+ Nysin? ), (2:5)

and (3-2) gives N, = 2n—{N,. (2-6)
For the prolate spheroid,

N,>N,, 2n=N,>4n/3, 4m/3>N,=0. (2+7)

For the sphere and oblate spheroid N, = N, and N, < N, respectively. The energy associated
with the applied field is given by (2-3). By a slight transformation the total (relevant)
energy, E’, may be expressed as

E' = Ep+Ey = $(N,+N,) I—1(N,— N,) I§ cos 24 — HI cos ¢.
It is convenient to express the parameters in non-dimensional form by dividing throughout
by the positive quantity (N,— N,) I3, giving for the reduced energy, 7',

;o E __le+Na
"= (]Vb_’Na)I(z)_‘l:Nb*Na

or, for the variable part of the energy, 7,
n = —%cos2¢—hcos g, (2-8)
where h = H|(N,—N,) .

— ¥ cos 2¢ —

_H p
(N,—N,) I, "%
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The expression (2-8) for 5 suggests immediately the physical origin of the two terms
contributing to the energy, but, as the consequential relations of greatest physical interest
are those between ¢ (or cos¢), 0 (or cos ), and 4, it is perhaps better to rewrite the equation as

7 =—%cos2(¢—0) —hcos é, (2+9)

giving 5 as y(h, @,0). Treating / and @ as fixed, the stationary values of the function are
given by

0n/0p = Lsin2(¢p—0) +hsing = 0, (2-10)
and these correspond, respectively, to minima, points of inflexion, or maxima for
0%/04? = cos 2(¢p—0) +hcos$ 0. (2-11)

The equation (2-10), the central equation of which numerical solutions are required,
provides a relation between % and the angles 6 and ¢ (or, alternatively, appropriate trigo-
nometrical functions of these angles, such as cos# and cos¢), and can be regarded as an
equation for any one of these three in terms of the other two. The ultimate requirement is
a solution giving ¢ (or cos @) as ¢ (4, ), and this is best approached indirectly. As an equation
in cos¢ (or in cosy), (2-10) is a quartic, and although the relations between the roots of
this equation may be used advantageously in dealing with critical values (see below), the
general solution is not only very troublesome to derive, but also, when obtained, not adapted
for numerical evaluation. The general procedure adopted, therefore, has been to evaluate
k directly from (2-10) for values of ¢ at suitable intervals, for each of a set of suitably spaced
values of §. From the numerical results, values of ¢ for particular values of 2 may be found
by inverse interpolation (see § 3). A

The form of the solution of (2:10) for % as A(¢) is shown for § = 10° in figure 2, in which
the curves may be referred to as (k,¢), contours. The inset shows the form of the corre-
sponding magnetization curve. The term ‘magnetization curve’ will be used of the curve
giving the relation between the resolved value of 7 in the field direction (or of I,/1,, that is
cos¢) and H (or %). For asingle ellipsoid there will in general be a component of the magnet-
ization normal to the direction of the field, but it is hardly necessary to consider this com-
ponent in detail, as it can readily be obtained, if required, from the results for the parallel
component. In the case most likely to be of physical interest, that of an assembly of ellipsoids
with random orientation, the resultant normal component will be zero.

The physical character of the change corresponding to a discontinuity in the magnetiza-
tion curve (inset in figure 2) is perhaps most readily appreciated from a set of curves showing
the dependence of energy on direction of magnetization for a series of constant values of #,
that is (7, ¢), o curves, of which a number are given in figure 3 for # = 10°. Beginning with
a positive 4 for which there is a unique energy minimum, as 4 decreases the equilibrium
values of ¢ are defined by a continuous sequence of energy minima until, at a critical value,
hq, of the field, the minimum and approaching maximum coincide, and subsequently dis-
appear. As & approaches 4, from the positive side, ¢ approaches ¢,, and as 4 passes through 4,,
¢ changes continuously but ‘spontaneously”’ to the value ¢;, corresponding to a new energy
minimum, with a continuous series of minima on either side, that is for greater and smaller

“values of 4. The process can be readily followed from the figures, and the relation between
figure 2 and figure 3 hardly requires detailed commentary.

VoL. 240. A, ‘ » 75
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Ficure 2. Relation between field and direction of magnetization for stationary values of the energy
for prolate spheroid oriented at 10° to the field. ¢, angle between H and I; = H/(N,—N,) I;
'N,, N, demagnetizing coefficients along polar and equatorial axes. The full and broken parts of the
curves correspond to energy minima and maxima respectively. The arrows indicate the course of
the change in ¢ as £ is reduced from a positive value greater than |4,|. (|%,| = 0-6738, ¢, = 39-28°,
¢’ =180°+5-97°.) The corresponding magnetization curve is shown in the inset diagram.

¥

(l) 910 1?0 2’{0

5%/// \\\3’\\\// \\

0 90 180 270 360
¢
Ficure 3. Relation between energy and direction of magnetization for constant field for a prolate
spheroid oriented at 10° to the field. The values of 104 (%, reduced field) are given on the curves.
¢, angle between H and I, 7, reduced energy (see equation 2-8). The arrows indicate the course
of the change in ¢ as 4 is reduced from a positive value greater than |4, |. Sec also figure 2.
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 609

Critical values

For a given value of 4, the critical values of / and ¢, say %, and ¢,, for which the change in
the equilibrium direction of magnetization becomes discontinuous as the field changes
continuously, are such that, the first partial derivative of 7 with respect to ¢ being zero, the
second passes through zero from a positive to a negative value. The three quantities %,, ¢,
and @ are then related by the simultaneous equations (2:10) and (2-11) (with the equality
sign) ; eliminating any one, a relation can be obtained between the other two. It is simplest

to eliminate %, giving tan 2(g,—8) = 2tan g,

or, in terms of ¥, | tan 2y, = 2tan (¢Y,+0),
giving tan3 ¢, = tand. (2:12)
It is convenient to write tantf = tan ¢, = 2. | i (2-13)
The value of ¢, is then given by _

Po = Yo+0 = 0-4tan~1¢, (2-14)
and tan g, = £/(1—£2). (2:15)

With the three quantities' hy, ¢y and 0 (or trigonometrical ratios for the angles) there are
essentially six relations giving any one explicitly in terms of a second. These relations can
be obtained by straightforward manipulation of the equations. The relation (2-15), in view
of (2-13), may be symbolized as the ¢,(f) relation, the inverse relation being
b e ratang )i 1
t = 2tan¢0{‘t(1q} 4tan?gy)t—1}. (2:15q)

The equations relating 4, and ¢ are

hy=— (1B (118, (216)

and - 56%@; (34T (4h2—1)1), (2164)
and those relating %, and ¢,, -

hy = —{(1+tan® ) /(1+ 4 tan® ¢y) }3, (2-17)

and tan gy = {(1—A3)/(4h3—1)}%. (2:17a)

When % decreases from a positive value greater than +| A, |, %, is negative, and when %
increases from a negative value less than —| 4, |, 4, is positive. Equation (2-164) or (2:174)
- shows at once that | %, | falls in the range $<| %, |<1, the value | %,| = 1 occurring, from
(2-164), for 6 = 0° or 90°, and | %, | = 4 for § = 45°. From (2:16), noting that the expression
is unchanged on substituting 1/¢ for ¢, it is apparent that 4, is the same for pairs of values
of § symmetrical about § = 45°. It is not necessary to deal formally with the question of the
physical significance of multiple roots, or with the method of selection of the relevant root,
as this, in practice, is quite clear from the general sequence of values. Numerical results
are given in §4. .

Ata critical value, A, of the field, for a given value of 6, the angle of magnetization changes
from ¢, to ¢y (or from ¥, to ¥5). The relation most readily obtained is that between tan

75-2
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610 E. C. STONER AND E. P. WOHLFARTH ON A MECHANISM

and ¢. Expressing (2:10) in terms of tan ¢ and ¢, and substituting for /4 from (2-16), a quartic
in tany is obtained. This quartic has two coincident roots, given by (2:13), and can be
factorized. The roots of the quadratic so obtained are found to be

tan ¢y = {4+ (1+ 2+ ) — (1+12)}, | (2:18)

one root corresponding to an energy minimum, the other to an energy maximum. (The
relations will be clear from figure 2.) The relevant root (energy minimum) may be found by
inspection. Equations analogous to (2-15) and (2-17) are too cumbersome to be useful, and
in general it is simpler to work via (2:18) rather than to obtain direct relations involving ¢,.
If, for example, ¢y is required for a given value, 4, of &, the value of ¢ is first obtained from
(2:16a), and substituted in (2-18); from tan ¢, ¥y is found, and hence ¢, from (2-4). It may
be noted that the physical character of the change is shown by the values of ¢, and ¢; (or
of ¢, and ¥j), and the magnitude of the discontinuity in the (resolved) magnetization by
COS ¢y — COS dy.
Random orientation. The (¢,0), diagram

The mean resolved value in the positive field direction of the magnetization of an assembly

of similar spheroids with polar axes orientated at random in a particular field 4 is given by

— nf a/
cosg = I/l ::fo “omcos ¢ sinﬁdﬁ/fo *omsin 040,
w2
- f cos ¢ sin 0, | (2-19)
0

where the value of ¢ to be taken, when there are alternative values, is that consistent with the
- previous history. The case explicitly considered here is that for descending %, # decreasing
from a positive value greater than 1. (The ascending magnetization curve is immediately
obtainable by symmetry. Subsidiary hysteresis loops could be obtained, if required, by
a suitable adaptation of the general method.) The value of the integral (2:19) is required
for a series of values of £, a suitable set being from -+1+5 to —1-0 at intervals of 0-1. Except
in special cases (k= 0, +1), the integral must be evaluated numerically, and if the more
convenient methods of numerical integration are to be used, the behaviour of the integrand
beyond the limits of integration must be examined. For this reason, and also because of the
intrinsic interest of the relations shown, it is appropriate to consider the general character
of the dependence of ¢ on @ at constant /.

For stationary values of the energy, the values of ¢, § and 4 are related by (2-10). The
function represented has a period of 2 in ¢, and of 7 in §. Constant / contours for 4 = 0,
405, 4-0-6 and +1-0 are shown in figure 4 for the range 0<C0< 180°, 0<<$#<<360°, the
portions of contours corresponding to energy minima and maxima being shown by full and
broken curves respectively.

In explanation of figure 4, it will be sufficient to consider the contours for £ =—0-6
(labelled —6) for the range 0<<#<<90°. If & has decreased to —0-6 from a positive value
greater than 1, the dependence of ¢ on ¢ is shown by the full curve in area (1) for 06 <16-6°,
that in area (3) for 16-6 <6< 73:4°, and that in area (2) for 73-4<6<90°. (If, on the other
hand, % had increased to —0+6 from a value less than — 1, the dependence of ¢ on @ for the
whole range 0<<0<90° would be that shown by the full curve in area (3).) Itshould perhaps
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 611

be noted that the sequence of values of ¢ for a stationary set of ellipsoids distributed in angle
over the ¢ range from 0 to 90° at a value of / reached by reduction from a positive value is
not necessarily the same as the sequence -of values which would be obtained if a single
ellipsoid were rotated through this angular range with % remaining constant. As an example,
in the rotational case, a representative point being on the 4 = —0-6 contour in area (3)
would, with % remaining at — 0-6, move along this contour as § increased, leaving it at the
critical value in area (7) (f = 90-+16-6°). For the case under consideration, the repre-
sentative point moves along the contour in area (3) only over the § range from 16-6° to 73-4°,
as already stated. |

1360 -~
QU /” (8)

2701~

$ 180

90

180

Fieure 4. Dependence of direction of magnetization, ¢, on orientation, 8, of polar axis of ellipsoid
with respect to the field. Full curves, energy minima. Broken curves, energy maxima. The numbers
on the curves give the values of 104. The dotted curves give the critical angles ¢,. The numbers in
brackets, (1) to (8), are for reference to the corresponding areas in the diagram representing 90°
ranges in 0 and ¢.

The symmetry relations which are apparent in figure 4 may be expressed in a number
of ways. The most useful set of independent relations is indicated in table 1. These relations
may be verified by substitution in (2:10) and (2:11).

With the aid of these relations, the (¢, ), curves for the entire angular range (180° in 4,
360° in ¢) may be derived at once from those for any angular range of 90° in 6 and 90° in ¢,
L.e. those in any one of the eight numbered areas in figure 4. Assuming the associated values
of ¢ and ¢ to have been found corresponding to both energy minima and maxima for the
required series of positive and negative values of 4 for 0<<0<90°, 0<#<90° (area (1) in
figure 4), the contours in area (2) may be drawn using the relation (5) in table 1. Those in
areas (3) and (4) are then obtainable using (c), and finally, using (d) the contours in the
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612 E. G. STONER AND E. P. WOHLFARTH ON A MECHANISM

areas (5) to (8). (As an alternative, the whole contour diagram may be built up from the
energy minima contours in the range 0<<6<90°, 0<<¢<180°, that is the contours in the
right-hand lower half of areas (1) and (2), bounded by the curve giving the critical angle,
$o.) A more complete contour diagram, corresponding to area (1) in figure 4, is shown in
figure 5.
TABLE 1. RELATIONS BETWEEN ANGLES CORRESPONDING
TO ENERGY MINIMA AND MAXIMA

6, angle between polar axis of ellipsoid and positive direction of field.
¢, angle between magnetization vector, I, and positive direction of field.

+ 1Ay —~ ||
7 min. max. min. max.
() 2 P, ¢4 ¢- 4
(6) in—0, m— L o - -
(C) 0] m+ ¢-— ¢.’. ¢+ -+
(d) im+0, ¢ P 4 Pa.
9(} 7 I
2. -4 | 57
S G S A 2 % 0
75 ” =
’ ’ A 7
’ P rd - 550‘/" 2
60 ‘ P /

¢ 45

30

15f

0 15 30 45 60 75 90
» 7]
FIGURE 5. Dependence of direction of magnetization, ¢, on orientation, 6, of polar axis of ellipsoid
with respect to the field, for 0<6<90° 0<¢<90° Full curves, energy minima. Broken curves,
energy maxima. The numbers on the curves give the values of 104. The dotted curves give ¢, and
¢o—180. See also figure 4 and table 1.

Aswould be anticipated from the character of the contours in figures 4 and 5, the numerical
evaluation of the integral (2-19), using the numerical tables from which the figures are
drawn, presents no difficulty for positive values of & not too near to unity, or for negative
values in the range —} <2< 0. For the range —1 <4< —4, the integration is very trouble-
some, not only owing to the integral being made up of three parts with ‘awkward’ limits,
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 613

but also owing to the behaviour of the integrand near these limits. Similar behaviour is
encountered in connexion with the integration for £ = 1, associated with the fact that for
0—90°, dp/df —oco. The method of dealing with these integrations is outlined in § 3, and
the results, along with others, are given in § 4.

Solutions of equation for stationary energy in special cases

Useful explicit solutions of the stationary energy equation (2-10), treating ¢ as the un-
known, are obtainable in the forms ¢(4) and $(f) for only a limited number of particular
values of ¢ and / respectively. The results obtained for § = 0, 45 and 90°, and for /= 0
and 41 are summarized below. The solutions correspond to energy minima, denoted by m,
or energy maxima, denoted by M, as determinable from (2-11). The character of the solution
over the range of the appropriate variable, or of ¢, is indicated by inserting (m) or (M)
between the limiting values, the total range so characterized and the particular solutions
chosen for the angles, being such as to cover the range of figure 4 (0<<6<180°, 0<¢<360°)
in the most convenient way. The angles are given in degrees, as being more convenient
practically, though the angles actually specified are all multiples of simple fractional parts
of m. The significance of the solutions will be readily apparent from inspection of figure
2 or figure 4.

f=0: (1) sing= 0
p= 0 h 4+ (m) —1 (M) —oo,
¢ = 180 h —oo (m) +1 (M) +oo;
Eo+1 (M) —1 (M) + 1,
(2) cosg=—h {¢' 0 180 360.

0 =45: h = % cosec g —sin ¢
() sing= Hoerzion {g TG W L0 ke
(2) sing =—H{(R2+2)t+4) {Z Lo mdh e,
0=90: (1) sing= 0
p= 0 h 400 (m) +1 (M) -—oo,
$=180 h —co (m) —1 (M) +oo;
- h + 1 (m) —1 (m) + 19
(2) cosg= A {¢ 0 180 360.
h=o: sin 2(¢—6) — 0,

g =0(m), ¢=0+90(M), §=0+180(m), ¢=0-1270(M).

¢ =320 0 0(m) 135(M) 2170,
$p=20+120 0 —45(M) 90(M) 225,
$=1301240 0 —90(M) 45(m) 180;

$=20+180 0  0(m) 45(M) 90,
90(M) 135(m) 180.
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614 E. C. STONER AND E. P. WOHLFARTH ON A MECHANISM
h=—%: (1) cos(3p—0)=0

$=20— 60 0 —45(M) 90(M)225,

$=20+ 60 0 —90(M) 45(m) 180,

¢=320+180 0 0(m) 135(M) 270,

¢—204300 0 —45(M) 90(M)225;
(2) sin(3¢—0) =0

¢ = 20 4 o(m) 45(M) 90,

90(M) 135(m) 180.

An intercomparison of the solutions and their character for = 0 and 90°, and for 42 = +}
and — 3, exemplifies very clearly the relations given in table 1.

Using the explicit solutions given above for # = 0, 4%, the integration in (2:19) may
be carried out and the mean resolved magnetization for ellipsoids orientated at random
obtained. The following results apply for 4 decreasing from a positive value greater than 1.

- w2
h=0: cos¢= cosf sinfdf = + 4.
0

/2
h=+%: cosg= cos 20 sin@df.
0

The integration may be effected by using cos%f as the variable, or otherwise, and gives
cos ¢ = 2(3—3%) = 0-760 770.

— /4 ml2 ‘
h=—%: cos¢ = cos 20 sin0d0+f cos (20 +m/3) sin6d0,
m/4

0
~ (2t —1)—§(3h—2),
= 0-138 071 —0-190 702 = —0-052 631.

For % increasing from a negative value less than —1, the values of cos¢ for & = —§ and
h = +1 are the values given above for & = 4} and & = —} with reversed signs,i.e. —0-760770
and -+ 0-052 631 respectively.

3. COMPUTATIONAL DETAILS

The central aim in the computational work has been to draw up a set of tables giving the
resolved magnetization as a function of the field for a suitable series of values of the orienta-
tion of the polar axis of the ellipsoid relative to the field; that is giving cos¢ as a function
of h for a series of values of 6 (see table 3, § 4). Values of cos ¢ are given to 4 places of decimals.
This accuracy may seem excessive for the purposes of such indirect comparison with experi-
ment as may be possible, but a lower accuracy would have left uncertainties as to some of
the interesting detailed characteristics of the behaviour. The actual calculations were made
to at least 5 places of decimals, and rounded values are given in the tables. Except in the
tables of critical values (tables 4 and 5), values of angles are given to 0-01°, and values of &
to 4 places of decimals. For the trigonometrical functions, the convenient tables of Lohse
(ed. Neugebauer 1935) (5 place, interval 0-01°) were largely used, supplemented by those
of Peters (1942) (7 place, interval 0-001°). These latter tables were particularly useful in
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 615

the calculation of critical values. Barlow’s tables (ed. Comrie 1941) were used for powers
and roots. Most of the numerical work was carried out with the aid of a Brunsviga calculating
machine.
Inverse interpolation
As extensive inverse interpolation was required in the work it is perhaps desirable to
indicate the method followed. As already stated (§2), the basic equation (2:10), namely

1sin2(¢—0) +hsing = 0, (3-1)

was first solved for %, values of / being found for § = 0(10) 90, and ¢ at intervals of 1° over
the requisite range. Owing to the character of the variation of # with ¢ (see, for example,
figure 2) the tables so obtained do not in general lend themselves to inverse interpolation
to give § as a function of / to the accuracy required in a single process (say by the two-machine
method of Comrie) without a much smaller interval than that chosen. As the number of
inverse interpolates required for each value of 6 is not usually large, however, and small
interval £(¢), tables would be of little direct value, it was considered more economical to
use the tables merely for the purpose of obtaining rough estimates of the inverse interpolates,
to form the starting point for more accurate determinations by an adaptation of the usual
method of trial. An estimate of ¢ having been obtained for a given value of 4, either by
linear interpolation or allowing for second differences, two values ¢, and @, are taken which
bracket the estimated value at as small an interval as is consistent with ensuring that the
correct value of ¢ for the given £ is also bracketed. A usual procedure is then to calculate the
corresponding values of , say %, and A,, from (3-1), and to obtain the value of ¢ for the given
h by linear interpolation; the process being repeated, if necessary. A modification adopted
was as follows. Writing /= }sin 2(¢—0), and F = —hsin g, where % is the value for which
¢ is required, the values of f}, f,, F; and F, were calculated, and with f; = }sin 2(¢, —6),

F, = —hsin g, etc., the following results are obtained, where differences are indicated by
0), “) /?’ 7’ 3’
' $1 Ho () B
() (@) (8),
P2 Soo () Fy
Since, for the correct value of ¢, say ¢ = @, +nw, f = F, n is given by
n=y/(@a—F). (3-2)

Although this modification of the usual procedure is formally trivial, practically it effects
a considerable saving of time, particularly in view of the fact that the values of % are usually
1 or 2 figure numbers, and that the difference between ¢, and ¢, can usually be made, from
the first estimate, sufficiently small for the calculation of (3-2) to be made mentally.

Numerical integration

For the calculation of the mean magnetization at a given value of % of an assembly of
ellipsoids orientated at random in the field (see table 6, § 4), the value of the integral in
(2-19) is required, namely

JE—— /2 :
cos ¢ :J- cos ¢ sin 6.df. » (3-3)
o .

VoL. 240. A. 76
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616 E. G. STONER AND E. P. WOHLFARTH ON A MECHANISM

From table 2, giving cos ¢ as a function of / at a series of values of ¢, tables may be drawn up
giving (cos@), for § = 0 (10°) 90°, and a series of equally spaced values of the integrand
obtained by multiplying by sin§. Where the integrand is a continuous function of ¢ over
the range of integration, thatis for | 2| <}, for }<A<(1, and for | 2| =1, the integration can
in principle be effected numerically, using the Newton-Gregory formula, or, if the con-
tinuation of the function outside the # range from 0 to 90° is known and is of a suitable
character, the more convenient central difference formula. For || <, the integration canin
fact be effected with the required accuracy with the intervalsin § as large as 10°, but smaller
intervals (5 or 2-5°) are required for $ <A <1, and also for | /| greater than, and close to 1.
(The difficulties arise from the behaviour of the differences of the integrand as ¢ approaches
90°, the general character of which can be appreciated, without detailed description, from
the forms of the curves in figures 4 and 5.) For || = 1, accurate integration by this method
is virtually impracticable, since for §—90°, (dp/df) ——oco. Similar difficulties arise for all
values of / in the range —1<(h<C —} at the critical values of #. The integrals extend over

three continuous ranges, as may be exemplified for / = — 0-6 (see figures 4 and 5).
(H) (2) 3)
= —06: 0 0—16-59 - 16:59— 73-41 73:41— 90
) 0—>50-34 190:36—224-56 129-66—126-87

The contribution from range (2) is readily evaluated it is simply the negative of the corre-
sponding integral for £ = + 0-6 between the particular limits. Difficulties arise at the upper
limit of range (1), and the lower limit of range (3). These can be overcome by using a suitable
transformation of the integral. '

The contribution to the required integral over any continuous range between ¢, and 0,
may be expressed in the following three forms:

- 02
Acos¢ =| cos¢sinfdl, (3-4)
2
cos 2
= -~f cos ¢ d(cos ), (3-5)
cos 0y
2] cos P2
= ~icos¢ cosl| + cosf d(cos ). (3-6)
i : 0y cos Py

Over a portion of a range in which cos ¢ passes through (or to) a maximum or minimum, or,
more generally, varies gradually, the form (3-5) is suitable; where cos# varies gradually,
the form (3-6). (The term ‘gradually’ is used loosely. The essential criterion in the choice
of a suitable form is the behaviour of the differences of the integrand when tabulated at
suitable equal intervals in the integration variable.) Thus, for 2 = 1 (see figure 4), the form
(3-6) was used with entries 1-00 (0-01) 0-89 for cos ¢ to cover the ¢ ranges 0-00 to 60-01, and
84-24 to 90-00; and the form (3-5) with entries 0-50 (0-05) 0-10 for cos 6 to cover the { range
60-00 to 84-26. The positive or negative contributions from the unavoidable small gaps or
overlaps may be readily estimated, in a number of ways, with the requisite precision. For
h = —0-6 (exemplifying the procedure for —1 << —}), the form (3-6) was used for range
(2) (and incidentally for the complete integration for 4 = +-0-6) and for range (1), and for
range (3) a combination of the forms (3-5) and (3-6). Interpolation is necessary when the
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 617

limits, such as those imposed by the critical values of § or ¢, do not coincide with tabular
entries.

The standard tables (tables 2, 3) give ¢ or cos¢ as a function of § for given 4, and in
carrying out integrations using the forms (3:5) or (3-6), direct or inverse interpolation is
necessary in drawing up the requisite tables of cos¢ as a function of cos@ or of cosf as a
function of cos ¢. Since the intervals are small, however, once the first few entries have been
obtained by the method indicated above, subsequent estimates may be readily made with
considerable accuracy by forward extrapolation using the part of the table already con-
structed. ,

It will be apparent that the labour entailed in computing the integrals corresponding to
the mean magnetization for ellipsoids orientated at random for the four % values from
—0:6 to —0-9 (table 6, § 4) is quite formidable, even allowing for the fact that the integrals
for the corresponding positive values of # are obtained incidentally. It must be stressed,
however, that a procedure similar to that outlined is necessary if uncertainties are to be
avoided. Even if an accuracy of 0-001 rather than of 0-0001 in cos ¢ had been aimed at, it
is doubtful whether a direct attack on the integrals (using the form (3-4) exclusively) would
have been satisfactory. The type of procedure adopted could clearly be applied with
advantage to many problems involving inverse interpolation and numerical integration
other than the particular one considered here. It may be mentioned that a number of
series expansions were obtained to cover the neighbourhood of ‘awkward’ points in the
hope that they could be utilized in carrying out the integrations. For this purpose, however,
they turned out to be of no practical value.

4. NUMERICAL RESULTS FOR PROLATE SPHEROID

Numerical results for prolate spheroids, obtained by the methods outlined in §3, are
given in this section, with such brief explanation of, and commentary on, the tables and
diagrams as seems necessary.

Variation with field of direction of magnetization (table 2)

The table gives the angle, ¢, between the magnetization vector, 1y, and the positive direc-
tion of the field (see figure 1) for descending field, for a number of orientations of a prolate
spheroid. The orientations are specified by the angle, 6, between the polar axis and the
positive direction of the field. The reduced field, 4, is related to the field, H, by

h=H[(N,—N;) I, (see (2:8)),

where N, and N, are the demagnetization coefficients along the polar and equatorial axes
respectively. For ferromagnetic, single-domain, ellipsoids, dispersed in a non-ferromagnetic
matrix, /, is the spontaneous (or quasi-saturation) magnetization per unit volume of the
ferromagnetic (not the mean value for the ferromagnetic and the non-ferromagnetic matrix).
Values are tabulated for # = 2-0, and at intervals of 0-1 downwards from 4 — 1-5 to the
tabular value preceding the value of % at which the discontinuous change occurs in the
equilibrium direction of magnetization. The critical value of %, hg, the critical angle, ¢,
and the final angle, ¢, after completion of the discontinuous change, are shown at the
bottom of the table. For negative values of / less than hy (e.g. for § = 10°, values less than
76-2
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618 E. C. STONER AND E. P. WOHLFARTH ON A MECHANISM

—0-6738), the angles are those listed for the corresponding positive values increased by
180°. For % increasing from an initial negative value less than %y, and having the values
—2-0, —1-5, —1+4, ..., the sequence of angles is that listed for z = 2-0, 1-5, 1-4, ..., increased
by 180°. It is unnecessary to tabulate values for § = 0° (the spheroid orientated with the
polar axis parallel to the field), since for £ decreasing, ¢ = 0 for all 2> —1. Further, ¢, = 0,
Po—180 = 0, and —k, =

TABLE 2. DEPENDENCE OF ¢ ON /i AND {/ FOR PROLATE SPHEROID

AN 10 20 30 40 45 50 60 70 80 90
AN ~

2-0 331 6-51 9-46 11-97 12-99 13-79 14-48 13-25 876 0-00
15 3-98 7-87 11-55 14-86 16-31 17-56 19-25 19-03 “14-63 0-00
1-4 4-15 - 821 12-07 15-91 17-16 18:54 20-52 20-68 16-63 0-00
1-3 4-33 8:58 12-65 16-39 18-:09 19-61 21-93 22-53 19-06 0-00
1-2 4-53 8-99 13-28 17-27 19-11 20-79 23-49 24-62 21-99 0-00
11 475 9-43 13-97 18-24 20-23 22-09 25-21 26-97 25-43 0-00
1-0 4-99 9-92 14-72 19-30 21-47 23-52 27-12 29-58 29-36 - 0-00
0-9 5-26 10-46 15-56 20-48 22-75 25-10 29-23 32-47 3371 25-84
0-8 5-55 11-06 16-49 21-79 24-36 26-86 31-56 3563 38-37 36-87
0-7 588 11-73 17-53 23-24 26-04 28-80 34-12 39-05 43-23 45-57
06 - 625 1248 18-69 24-85 27-91 30-95 36-93 4274 48-24 53-13
0-5 6-67 13-33 20-00 26-67 30-00 33:33 40-00 46-67 53-33 60-00
04 7-14 14-30 21-48 28-70 32-33 35-98 43-35 50-83 58:50 66-42
0-3 747 - 1541 23-17 31-00 34-95 38-93 46-99 55-23 63-73 72-54
0-2 8:34 16-70 25-11 33-60 37-89 42-21 50-95 59-88 69-03 78-46
01 9-09 18-21 27-36 36-58 41-21 45-87 55-27 6478 . T4-45 84-26

0-0 10-00 20-00 30-00 40-00 45-00 50-00 60-00 70-00 80-00 90-00

-01 11-10 22-16 33-14 43-99 49-36 5470 65-23 75:58 8575 95-74
—0-2 12-48 24-84 36-96 4875  54-50 60-15 71-12 81-66 91-78 101-54
-0-3 14-25 28-25 4278 54-65 60-79 66-72 77-97 8843 98-22 107-46
-04 16-61 32-86 48-36 62-64 69-20 75-36 86-49 96-33 105-26 113-58
—-05 20-00 40-00 60-00 80-00 90-00 93-33 100-00 106-67 113-33 120-00

. . — — —_ — —_ — —_ 123-65 126-87
—8~$ 25—64 — — —_ - — — — — 13443
—0-8 —_— — — — — — — — —_ 143-13
—09 — L — — — — —_ — —_— 154-16
"o — - _ . - . - _ — 180-00

b0 39-28 5553 6978 '83-33 90-00 9667 110-22 124-47 140-71 180-00
Pu—180 597 1270 1967 2662 30-00 33.27 39-24 43-75 4453 0-00

—hy 0-6738 0-5736 0-5240 0-5026 0-5000 0-5026 0-5240 0-5736 0-6738 1-0000

Variation with field @F resolved magnetization (table 3)

The resolved value of the magnetization in the positive direction of the field is given by
I, cos . In table 3 values of cos § are tabulated at the same intervals in § and in £ as in table 2.
The data in the table, including the values for cos ¢, and cos ¢; at the bottom, together with
the value of /, from table 2, provide a detailed numerical specification of the reduced
magnetization curve for the various orientations of a prolate spheroid in a field. For negative
fields increasing from a value less than /, the sequence of values of cos ¢ for b = —2:0, — 15,
—1-4, ..., is the negative of the sequence shown for /= 2:0, 1-5, 1-4, .... The relations will
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 619

be clear from the examples of magnetization curves shown in figure 6. For § = 0, cos¢ =1
for the % values given in the table, cos ¢, = 1, cos gy = — 1.

It is to be noted that the reduced critical field, /4, is not necessarily the same as the
reduced coercivity, %, (corresponding to H,, the value of H at which the intensity of mag-
netization is reduced to zero). For 0<<#<45° cos¢, and so the resolved value of I, passes
through zero in the course of the jump, and %, is equal to %,. For 45<6<90°, the critical
value cos ¢, is negative, and | &, | <| %, |. An approximate value of z, may be obtained by
inverse interpolation in tables 2 or 3. For # = 45°, the jump begins at cos¢ = 0 (¢ = 90).
For § = 90, the jump becomes zero, and the magnetization curve is reversible, though with
a discontinuity in the rate of change of magnetization with field atboth 2 = +1and 2 = —1.

TABLE 3. DEPENDENCE OF COS ¢) ON 4 AND § FOR PROLATE SPHEROID
10 20 30 40 45 - b0 60 70 80

0-9983 0-9935 0-9864 0-9783 0-9744 0-9712 0-9683 0-9734 0-9883

0-9975 0-9906 0-9798 0:9666 0-9598 0-9534 0-9441 0-9453 0-9676
0-9974 0-9897 0-9779 0-9632 0-9555 -~ 09481 = 0-9366 0-9356 0-9582
0-9971 0-9888 0-9757 0-9593 0-9506 0-9420 0-9277 0-9237 0-9452
0-9969 0-9877 0-9733 0-9549 0-9449 0-9349 0-9172 0-9091 0-9273
0-9966 0-9865 0-9704 0-9498 0-9383 0-9266 0-9047 0-8913 0-9031

0-9962 0-9850 0-9672 0-9438 0-9306 . 0-9169 0-8900 0-8697 0-8715
0-9958 0-9834 0-9633 0-9368 0-9222 0-9055 0-8726 0-8437 0-8318
0-9953 0-9814 0-9589 0-9286 0-9110 0-8921 0-8521 0-8128 0-7841
0-9947 0-9791 0-9536 0-9189 0-8985 0-8763 0-8278 0-7766 0-7286
0-9941 0-9764 0-9473 0-9074 0-8837 0-8516 0-7994 0-7345 0-6660

0-9932 0-9730 0-9397 0-8936 0-8660 0-8355 0-7660  0-6862 0-5972
09922 0-9690 0-9305 0-8771 0-8449 0-8092 0-7272 " 0-6316 0-5225
0-9910 0-9640 0-9193 0-8572 - 0-8197 0-7780 0-6821 0-5702 0-4427
0-9894 0-9578 0-9055 0-8329 0-7892 0-7407 0-6300 0-5018 0-3578
0-9874 0-9499 0-8881 0-8031 0-7523 0-6962 0-5697 0-4260 0-2682

0-9848 0-9397 0-8660 0-7660 0-7071 0-6428 ~ 0-5000 0-3420 0-1736

0-9813 0-9261 0-8374 0-7194 0-6512 0-5779 0-4190 0-2490 0-0741
0-9764 0-9075 0-7991 0-6593 0-5807 0-4977 0-3236 0-1451 —0-0311
0-9692 0-8809 0-7457 0-5786 0-4880 0-3952 0-2085 0-0275 —0-1429
0-9583 0-8410 0-6645 0-4596 0-3551 0-2528 0-0612 —0-1103 —0-2632
0-9397 0-7660 0-5000 0-1736 0-0000 —0-0481 —0-1736 —0-2868 —0-3961

0-7740 0-5660 0-3456 0-1162 0-0000 —0-1162 —0-3456 —0-5660 —0-7740
—09946 —0-9750 —0-9416 —-0-8940 —-0-8660 —0-8361 —0-7745 —0-7224 —0-7128

Critical values (tables 4 and 5)

For any orientation, ¢, of the polar axis of a prolate ellipsoid relative to the field, pre-
cise calculations may be made, using the equations (2:12) to (2:18), of the critical field, 4,,
in passing through which a discontinuous change in the equilibrium direction of the
magnetization occurs, and of the angles, ¢, and ¢;, between the magnetization, /,, and the
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(positive) field direction at the beginning and end of the ‘jump’. Values of 4,, ¢, and ¢, and
the corresponding values of the reduced resolved magnetization, cos ¢, and cos ¢y, and of the
magnitude of the jump, are given in table 4. The variation of ¢, and ¢; (and of the corre-
sponding cosines) with # is somewhat complex (as will be apparent from figures 4, 5 and 6),
and without a very large number of entries, a table at equal intervals in § over the range
0<<0<90° (such as is provided incidentally in tables 2 and 3) does not bring out clearly
essential characteristics of the behaviour. Entries have therefore been made for values of
¢ which are symmetrical about § = 45°, but at intervals ranging from 1 to 10°, according
to the character of the variation. If Ay, ¢y, and cos¢,, refer to an angle 6,, then for
6, = 90—0,, the following relations hold: 4y, = g, ¢go = 90+, COSGyy = —COs Py;.

TABLE 4. CRITICAL FIELD, /), CRITICAL ANGLE OF MAGNETIZATION, ¢),, AND RELATED
QUANTITIES AS DEPENDENT ON ORIENTATION, /, OF PROLATE SPHEROID

¢, and ¢; are the initial and final angles made by the magnetization vector, I, with the positive direction
of the field, as 4, decreasing from a positive value greater than | 4|, passes through the value 4. The resolved
value of the magnetization in the positive direction of the field is given by I, cos ¢. The jump in the resolved
magnetization at £, is given by I,(cos ¢5—cos ¢).

h=H|(N,—N,) I,, where N, and N, are the demagnetization coefficients along the polar and equatorial
axes respectively.

7 —hy do cos ¢, $o—180 —cos ¢ cos @g —cos P,
0 1-00000 0-000 1-00000 0-000 1-00000 —2-00000
1 0-90707 15-542 0-96343 0-524 0-99996 —1-96339
2 0-85929 20-100 0-93919 1-076 0-99982 —1-93901
4 0-79237 26-391 0-89578 2-231 0-99924 —1-89502
6 0-74370 31-264 0-85479 3-440 0-99820 —1-85299
8 0-70531 35-471 0-81441 4-689 0-99665 —1-81106

10 0-67381 . 39-287 0-77404 5971 0-99458 —1-76862

12 0-64733 42-829 0-73339 7-279 0-99194 —1-72533

14 0-62475 46-186 0-69232 8-610 0-98873 —1-68105

16 0-60527 49-402 0-65075 9-958 0-98493 —1-63568

18 0-58838 52-508 0-60865 11-322 0-98054 —1-58920

20 0-57365 55-526 0-56603 12-697 0-97555 —1-54158

30 0-52402 69-784 0-34557 19-671 0-94164 —1-28721

40 0-50255 83-326 0-11623 26-618 0-89402 —1-01025

45 0-50000 90-000 0-00000 30-000 0-86603 —0-86603

50 0-50255 96-674 —0-11623 33-269 0-83610 —0-71987

60 0-52402 110-216 —0-34557 39-238 0-77452 —0-42896

70 0-57365 124-474 —0-56603 43-749 0-72237 —0-15634

72 0-58838 127-492 —0-60865 44-337 0-71524 —0-10659

74 0-60527 130-598 —0-65075 44-762 0-71004 —0-05929

76 0-62475 133-814 —0-69232 44-982 0-70733 —0-01501

78 0-64733 137-171 —0-73339 44-936 0-70789 +0-02550

80 0-67381 140-713 —0-77404 44-534 0-71283 +0-06121

82 0-70531 144-529 —0-81441 43-630 0-72380 +0-09061

84 0-74370 148-736 —0-85479 41-968 0-74352 +0-11126

86 0-79237 1563-609 —0-89578 39-013 0-77700 +0-11878

88 0-85929 159-900 —0-93919 33-277 0-83603 +0-10316

89 0-90707 164-458 —0-96343 27-609 0-88614 +0-07730

90 1-00000 180-000 —1-00000 0-000 1-:00000 0-00000
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In these, as in the previous tables, the values listed are those appropriate for # decreasing
from a positive value greater than -+ |4, | for each particular orientation angle, §. (For
increasing k, the values can be written down from those listed as described in connexion
with tables 2 and 3.) An interesting feature of the results is that although, for decreasing 4,
@ is always greater than ¢, the jump, as measured by cos ¢, —cos ¢, is not negative (i.e.
in the direction corresponding to an increasing negative resolved magnetization) over the
whole range. Table 4 shows that the jump becomes positive at a value of # between 76 and
78°, then at first increases, and finally decreases to zero for § = 90°. The value of § at which
the change in angle from ¢, to ¢, corresponds to a zero change in the resolved magnetization,
that is to equality of cos ¢, and cos ¢y, can be determined without difficulty from the basic
equations (2-10) and (2-11), noting that ¢; = 2m—¢,, and that ¢, corresponds to a ‘point
of inflexion’ (a zero value in (2-11)) and ¢; to a minimum in the energy (a positive value in
(2-11)). Manipulation of the equations shows that, in the ranges 0 <6 <}m, 0<¢@,<m, the
only value of ¢, for which the requirements are satisfied is 37/4. The corresponding value
of 0 is }m+ % tan~!2, and of &,, — (2/5)%. Numerical values are given in table 5.

TABLE 5. CRITICAL ORIENTATION, {, CRITICAL ANGLE OF MAGNETIZATION, @), AND
RELATED QUANTITIES AS DEPENDENT ON CRITICAL FIELD, /i, FOR PROLATE SPHEROID

—hy 0 do cos @, o —180 —cos ¢ cos ¢ —cos @,
1-0 0-000 0-000 - 1-00000 0-000 1-00000 —-2-00000
0-9 1-128 16-238 0-96011 0-593 0-99995 —1-96006
0-8 3732 25-659 0-90139 2-073 0-99935 —1-90074
0-7 8-312 36-087 0-80812 4-887 0-99636 —1-80449
0-6 16-595 50-336 0-63829 10-362 0-98369 —1-62198
0-5 45-000 90-000 0-00000 30-000 0-86603 —0-86603
0-6 73-405 129-664 —0-63829 44-655 0-71136 —0-07307
0-7 81-688 143-913 —0-80812 43-813 0-72160 +0-08652
0-8 86-268 154-341 —0-90139 38:467 0-78296 +0-11843
0-9 88-872 163-762 —0-96011 28-558 0-87834 +0-08177
10 90-000 180-000 —1-00000 0-000 1-00000 ~0-00000
0-63245 76-717 135-000 —0-70711 45-000 0-70711 0-00000

Random orientation (table 6)

The results for the variation with field (H descending) of the resolved magnetization for
an assembly of similar prolate spheroids with polar axes orientated at random are shown in
table 6.

The character of the variation shown by the table is most readily appreciated from
figure 7. Two particular points may be noticed. The first is that the cross-over’, due to
the positive jumps when ¢ is in the range 76-72 <6< 90°, is negligible in the mean curves,
being apparent in the table only for / = — 0-9, for which the value for | cos ¢ | is just greater
than that for & = 4-0-9 (by 0-0002,, according to the very carefully checked 5-place com-
putations). The second point is that the coercivity, | 4, |, is numerically less than the smallest
value of | /| for which jumps occur. Thus, for descending %, the discontinuous changes in
magnetization occur only in the region in which the resolved magnetization is negative.

With the tabular intervals of table 6, it is not possible to make an accurate estimate of h,.
An approximate estimate is £, = —0-479. (Owing to the discontinuous change in the first
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derivative of the function at & = —0-5, inverse interpolation can be carried out only by using
the backward Gregory-Newton formula, or some equivalent, and the convergence is very
slow. Using differences up to the 3rd, 4th, 5th and 6th, the calculated values of —#, are
0-4772, 04779, 0-4783 and 0-4786 respectively. For a more accurate estimate, it would be
necessary to calculate cos ¢ at smaller intervals in %, and the labour entailed in this would

be out of all proportion to the theoretical or practical usefulness of a more accurate estimate
of ).

TABLE 6. VARIATION OF MEAN RESOLVED MAGNETIZATION WITH FIELD
(H DESCENDING) FOR PROLATE SPHEROIDS ORIENTATED AT RANDOM

h cos ¢ —h cos ¢
2-0 0-9809 0-0 0-5000
1-5 0-9646 0-1 0-4293
14 0-9588 0-2 0-3488
1-3 0-9516 0-3 0-2548
1-2 0-9422 0-4 0-1380
11 0-9298 0-5 —0-0526
1-0 0-9130 0-6 -—-0-6978
0-9 0-8907 0-7 —0-8145
0-8 0-8641 0-8 —0-8624
07 0-8335 0-9 —0-8909
0-6 0-7991 1-0 —0-9130
0-5 0-7608 11 —0-9298
04 0-7184 1-2 —0-9422
0-3 0-6716 1-3 —0-9516
0-2 0-6201 1-4 —0-9588
0-1 0-5632 1-5 —0-9646

Magnetization curves (figures 6 and 7)

Illustrative magnetization curves, drawn from table 3, are shown in figure 6 for § = 0, 10,
45, 80 and 90°. The cos @, and cos @, curves are also shown, drawn from tables 4 and 5.
The figure shows clearly the remarkable change in the character of the magnetization
curves for change in orientation, from the rectangular hysteresis loop for § = 0, to the
straight line, non-hysteretic, curve for # = 90°. The magnitude of the jumps is given by the
difference between cos ¢, and cos ¢, the upper half of the former and the lower half of the
latter curve applying to the range 0<<#<45°. The values § = 10° and # = 80° have been
chosen so as to bring out the inter-relations between the curves for two angles #, and 0,
such that , = 90°—0,. '

The magnetization curve corresponding to the mean resolved magnetization of an
assembly of similar spheroids, orientated at random, is shown in figure 7, the full curves
referring to prolate spheroids, discussed above, and the broken curves to oblate spheroids
(see §5).

The initial curve for the prolate spheroid assembly shown in figure 7 is the mean of the
descending and ascending branches of the hysteresis curve. It corresponds to the course of
the magnetization for an assembly initially completely demagnetized, in the sense that, for
spheroids orientated at an angle @ to the positive field direction, the magnetization vector
for one half the spheroids is along the polar axis in one sense (¢ = 6) and for the other half
in the opposite sense (¢ = m4-0).
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Ficure 6. Magnetization curves for prolate spheroids. The resolved magnetization in the positive
field direction is given by I, cos ¢, where I, is the saturation magnetization. The field, H, is given by
H = (N,—N,) Ik, where N, and N, are the demagnetization coefficients along the polar and equa-
torial axes. The angle, 6, between the polar axis and the direction of the field, is shown, in degrees,
by the numbers on the curves. The dotted curves give cos ¢, and cos ¢g, where ¢, and ¢, are the angles
made with the positive field direction by the magnetization vector at the beginning and end of the
discontinuous change at the critical value, #,, of the field.
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-1-0 &f_'_—_—::—,—/' ————————— i
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Ficure 7. Magnetization curves for prolate (full curves) and oblate (broken curves) spheroids
orientated at random. The curves refer to similar prolate (or oblate) spheroids orientated at random.
cos ¢ is proportional to the mean resolved magnetization per spheroid in the positive field direction,
or to the resultant magnetization in this direction of the assembly, H = (| N,—N,|) I k.
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624 E. C. STONER AND E. P. WOHLFARTH ON A MECHANISM

Among various characterizing magnitudes for the random assembly of prolate ellipsoids
are the following:

Coercivity: H, = 0-479(N,—N,) I,. (4-1)
Initial susceptibility: _ Ko = %ﬁ (4-2)
b a
Remanent intensity of magnetization: I, = 1. (4-3)
From the above, the coercivity and initial susceptibility are related by
H, = 0-319(1y/x,). (4-4)

In these equations, I, is to be understood as the saturation magnetization (per unit volume)
of the material of the ellipsoidal ferromagnetic particles themselves, and, for each particle,
H is the field originating externally to itself and acting on the particle. If I, is the mean
resolved value of [, in the field direction, , is the initial value of (dI;/dH). For a specimen
of material consisting of ferromagnetic particles dispersed in a non-ferromagnetic (or less
ferromagnetic) matrix, the relation between H, as used here, and the actual field applied
to the specimen would require careful consideration, in the usual manner, in each particular
case. While it might be difficult to derive, with certainty, the values of «,, to which the
above equations refer, from experimentally measured susceptibilities, the difficulty does
not arise with H,, which, with a non-ferromagnetic matrix at least, would be identifiable
with the coercivity as ordinarily measured.

Conversion factors
The field, H, is related to the reduced field, %, as used in the tables and figures, by

H= (N,—N,) Lk, (4-5)

as given in (2-8). Here N, and N, are the demagnetization coefficients for magnetization
along the polar and an equatorial axis respectively. For a prolate spheroid, N,>N,. (For
the oblate spheroid, it is appropriate to put &z = (N,—N,) I;4, see §5.) Critical values of
the reduced field fall in the range $<C| %, |<1, and in order that the significance of these
values may be appreciated, it is appropriate to give a short table (table 7) of the values of
N,— N, for ellipsoids of revolution of different dimensional ratios, m(m = a/b). It may be
noted that, in view of (2:2) and (2-6), for a prolate spheroid (m>1),

N,—N, = 2m—3N,, (4'6)
and for an oblate spheroid (m<1),
N,—N, = 3$N,—2m. (4+7)

Numerical values are readily obtained by the use of the detailed tables of values of D,
(D, = N,/4m) for ellipsoids of revolution given by Stoner (1945).

The general character of the dependence of | N,—N,| on the dimensional ratio, m, is
perhaps most readily appreciated from the logarithmic plot shown in figure 8.

The maximum value of the reduced critical field, and' of the coercivity, for prolate
spheroids is unity. The corresponding value of H, for prolate spheroids of given dimensional
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ratio, is obtained by multiplying the numbers in table 7 by [, for which a representative
order of magnitude is 10%. (For iron, J;, = 1-7 x 103.) It will be apparent that for elongated
ellipsoids, values of H,, of several thousand oersteds are possible, and that even for prolate

TABLE 7. VALUEs OF | N,— N, | FOR ELLIPSOIDS OF REVOLUTION

m = a/b. a, polar axis; b, equatorial axis. N,, N,, demagnetization coeflicients for magnetization along
polar, equatorial axis.

oblate spheroid prolate spheroid
m N,—N, m N,—N, ‘m N,—N,
0-0 12-566 1-0 0-000 2 3-:012
0-1 9-943 11 0-472 : 3. 4-234
0-2 7-863 1-2 0-890 4 4-862
0-3 6-183 1-3 1-261 ’ 5 ' 5-231
0-4 4-803 14 1-593 6 5468
05 3-654 1-5 1-892 10 © 5901
0-6 2-686 1-6 2-161 20 6-156
0-7 1-861 1-7 2-404 30 6-218.
0-8 1-152 1-8 - 2-625 40 6-243
09 0-537 1-9 2-827 50 6-256
1-0 0-000 2-0 3-012 o) - 6-283
m
. 1 2 3 45678910
TTTT T1TT)8
— ——
| 1
— i 4 Nb—Na
- —2
0 0
_2 - —
‘.4_ T
R e -
N,—N, _g
_10/ ]
~1 2=
-4 -
[ 111 P11l
01 02 03 0405 07 09
m 06 0810

Ficure 8. Dependence of the difference, | N, — N, |, between the principal demagnetization coefficients
of ellipsoids of revolution on the dimensional ratio, m. m = a/b. a, polar axis; b, equatorial axis.
The m scale is logarithmic. :

spheroids which are nearly spherical in form (say m = 1-1 or 1-2), values of several hundred
oersteds are possible. It will be shown in the next section that for oblate spheroids dis-
continuities in magnetization occur only when the field passes through zero and that the
coercivity is also zero. For the general ellipsoid, coercivity values intermediate between
those for prolate and oblate spheroids are to be expected.

77-2
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626 E. C. STONER AND E. P. WOHLFARTH ON A MECHANISM

5. THE OBLATE SPHEROID AND THE GENERAIL ELLIPSOID

(1) The oblate spheroid

The relation between the character of the variation with field of the magnetization for
an oblate, and for a prolate spheroid becomes fairly clear on consideration of diagrams
similar to figure 1. Denoting by ' the angle between the polar axis, a, of the oblate spheroid,
and the positive direction of the field, it is at once apparent that if 1 is restricted to the H, a
plane, the directions of I, corresponding to stationary energy values will be the same as
those for a prolate spheroid for which the orientation angle, 8, is equal to 0" -+ 4. The direc-
tions correspond to true energy minima, however, only when the resolved component of I,
is in the direction of the field. When the field has been reduced from a positive value to zero,
I, lies along an equatorial axis in the H, a plane in a sense such that the angle made with the
positive direction of the field is less than 90°. When H is zero, the energy is the same for all
directions of [, in the equatorial plane, and as H passes through zero to a negative value,
1, moves round in the equatorial plane to a direction again in the H, a plane at 180° to the
original direction, and making an angle of less than 90° with the negative value of H. Dis-
continuities in the resolved magnetization thus occur only at /1 = 0, when they correspond
to a reversal in sign of cos ¢’, and there is no hysteresis. The treatment of the general ellipsoid
outlined below provides a formal proof that the direction of J, moves out of the H, a plane
for an oblate spheroid only as H passes through the value zero, and also that for a prolate
spheroid the equilibrium direction of I; is always in the H,a plane. Acceptance of these
conclusions as ‘ physically obvious’, however, makes possible a very simple formal treatment
of the interrelation between the magnetic behaviour of prolate and oblate spheroids, leading
to a statement which enables numerical results for the oblate spheroid to be readily obtained
from the tables already given for the prolate spheroid. '

The equations for the dependence of energy on direction of magnetization, when the
magnetization vector is in the plane defined by the field and the polar axis of an ellipsoid of
revolution are given in § 2. In reducing these equations to non-dimensional form it is appro-
priate for the oblate spheroid (a<b, N,> N,) to divide by the positive quantity (N,—N,) Z,.
Denoting the associated values of the orientation angle, magnetization angle, and reduced
field for the oblate spheroid by ¢’, ¢’, and /', where

¥ — H|(N,—N,) I, (5:1)
directions of magnetization corresponding to stationary energy values are determined by
—3$sin2(¢'—0") +h'sing’ = 0. (5-2)
Values of ¢’ given by this equation correspond to energy minima, points of inflexion, and
maxima, for —cos2(¢’' —0") +H cos ¢’ 20. o (53)
Comparison of (5:2) and (5-3) with (2-10) and (2-11) then shows that, provided /;is restricted
to the H, a plane, the relation between the sets of associated values for oblate and prolate
spheroids may be stated as follows:
If the set of values 0, ¢, & corresponds to a stationary energy value (minimum, in-

flexion, maximum) for the prolate spheroid, then the set of values ', ¢, &’ corresponds
to a stationary energy value (minimum, inflexion, maximum) for the oblate spheroid if

KW=h 0=1n—0 ¢=—4. (5-4)
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OF MAGNETIC HYSTERESIS IN HETEROGENEOUS ALLOYS 627

Using (5-4), the values of ¢’ for energy minima for the oblate spheroid can therefore be
immediately obtained from table 2, but, owing to the rotation of J, in the equatorial plane
as H passes through the value zero, the relevant / range is restricted to that for which £>0.
Thus, for §" = 20°, the values of ¢’ are the negative of the values of ¢ given in table 2 under
0 = 70° over the & range from -+2 to 0. The values of cos¢’ are similarly obtained from
table 3, but, since cos (—¢) = cos ¢, without change of sign. It may be noted that, as far
as maxima and minima in the H, a plane are concerned, figures 4 and 5 become applicable
to oblate spheroids if the signs of the values given on the 4 contours are reversed, and the full
and broken curves are taken to refer to energy maxima and minima respectively.

It is not possible to derive values of the mean resolved magnetization of oblate spheroids
orientated at random from those for prolate spheroids, but the numerical integrations
present no special difficulty. The results are given in table 8, and are shown graphically in
figure 7. ‘

TABLE 8. VARIATION OF MEAN RESOLVED MAGNETIZATION WITH FIELD
FOR OBLATE SPHEROIDS ORIENTATED AT RANDOM

cos ¢ is proportional to the mean resolved magnetization per spheroid in the positive field direction.
H=(N,—N,) Ih. For h =—|#k|, cos ¢ is the negative of the value for & = +|%|. In passing through £ =0
from positive to negative, cos ¢ changes from + 1w to — .

h cos ¢ h cos ¢
2:0 0-9858 0-5 0-9000
0-4 0-8835
1-5 0-9762 0-3 0-8643
1-4 0-9732 0-2 0-8420
1-3 0-9696 01 0-8160
1-2 0-9652
1-1 0-9600 0-0, 0-7854
1-0 0-9537 0-0_ —0-7854
09 0-9461
0-8 0-9371 —0-1 —0-8160
07 0-9266 —0-2 —0-8420
0-6 0-9143 -0-3 —0-8643

(ii) The general ellipsoid

Although a detailed numerical investigation of the magnetic behaviour of an assembly
of ferromagnetic particles of general ellipsoidal form would hardly yield results of a value
commensurate with the labour entailed, an examination of the relations for the general
ellipsoid is necessary for two reasons. First, formal confirmation is required for the con-
clusions drawn as to the stability of the state of an ellipsoid of revolution in which the
magnetization vector lies in the plane defined by the field and the polar axis; and secondly,
it would be unwarrantable to base general conclusions about the behaviour of assemblies
of ferromagnetic particles solely on the examination of such specialized forms as strict
ellipsoids of revolution.

Basic equations. In dealing with the general ellipsoid it is convenient to take as co-ordinate
axes the principal axes of the ellipsoid. The directions, and also the semi-axes, are denoted
by a;, ay, a; and the corresponding demagnetization coeflicients by N,, N,, N,. The angles
made by 1, with the axes are denoted by «,, a,, ¢3 and those made by H by f,, f,, fs. To avoid
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628 E. G. STONER AND E. P. WOHLFARTH ON A MECHANISM

undue complication the cases to be examined will be limited to those in which H lies in
a principal plane, say the 4,, a, plane, so that

cosfly =0, cosf, =sinf,. ‘ (5°5)
By use of the relation cos?a; +cos? oy +cos?ay = 1, (5-6)

the problem is reduced to one in two variables, and since particular interest attaches to the
question of whether [, leaves the a,, a, plane, these variables are conveniently taken as
@,y ¢3. The energy equation, omitting constant terms, can then be written

E = 3IY (N, — N,) cos?a; 4 (N;— N,) cos? a5}
— HI{cosa, cosfl,+ (1—cos?a, —cos?ay)tsin g}, (5:7)

Writing gglzﬁ, ga%:ﬁ’ %Z_E%‘:fll’ %:ng %:ﬁm
the conditions for an energy minimum are
SHi=0, f3=0, (5:8)
Jufss—/5>0, . (5:9)
S>>0 (or f3>0). (5-10)
For a stationary value with respect to as,
fy = sinay cos ag{(N,— Ny) I3 — HI (1 —cos®a, —cos?as) "¥sinf,} = 0. (5-11)

Three cases in which this equation is satisfied may be distinguished.

(i) cosas =0 (i.e. I, in the a,, a, plane).

With this value substituted in the general expressions for the derivatives, f; = 0, and the
conditions for an energy minimum are

Sy = 4(Ny M) sin 20, + Hlysin (4, —f) = 0, (512)
f11 = (Ny—N,) cos 20y + HI  cos (&, —f,) >0, ' (5-13)
Ja3 = (Ny—N,) I3+ HI(sin f, [sina;) > 0. (5-14)

The content of (5:12) and (5-13) is essentially the same as that of (2-10) and (2-11) (for the
prolate spheroid) and of (5-2) and (5-3) (for the oblate spheroid). The equations give the
conditions for an energy minimum with respect to change of direction of I; in the a,, a,
plane. Such a minimum is a true minimum only if (5-14) is also satisfied. The discussion of
this case is taken up further below.

(ii) sinag = 0 (i.e. I, normal to the a;, a, plane).

This solution is associated with a true energy minimum only if N; is smaller than N,
and N, (a; greater than ¢, and a,) and for the particular field value, H = 0. (Itis unnecessary
to enter here into the details which a rigorous treatment would require.)

(i) (N,— N3) I3 = HIy(1—cos? o) —cos?ag) “Esin ).

When H decreases from a large positive value, this solution is relevant as being associated
with a true energy minimum only when I leaves the a,, a, plane while H is still positive to
pass through a position normal to the plane (case (ii)) when H is zero. The equation then
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determines, in conjunction with the associated equations for f}, f;; and f,, the equilibrium
direction of /; (dependent on H and f,) when it is neither in, nor at right angles to, the
principal plane a;, a,. The resulting equations are very complicated and have not been
investigated in detail, but there is nothing to suggest that the decrease in cosa, over this
range is other than monotonic. It may be noted, moreover, that although /; is not in the
a,, a, plane, in this case, as well as in case (ii), for any assembly of ellipsoids, the normal
component of the magnetization remains equal to zero, for there are alternative solutions
of the equations corresponding to values of cos a; which are equal but of opposite sign.
Magnetization in principal plane. The outline just given is sufficient to indicate the character
of the sequence of equilibrium directions of the magnetization vector when it moves out
of a principal plane in which the field is applied, and also to show how the course of such
changes could, if required, be followed in detail. In order to bring out the main points more
clearly, and in such a way as to link up with the treatment given of ellipsoids of revolution,
it is convenient to re-express some of the results in terms of the angles 6, ¢ and ¥ previously
used (see figure 1), and which are appropriate when the magnetization is in the same plane
as H and a principal axis. The reference axis of the ellipsoid is taken as a; (which may be
greater than, less than, or intermediate between ¢, and a,), and the field is taken to lie in the
a,, a, plane. The relations between the angles ¢, ¢ and ¢ and the angles used in (5'5) to

BIYare oy g0, pi=—0, giving w—f=pto=4. (515)
The angle ¢ gives the orientation of the @, axis with respect to the field, and ¢ gives the angle
between I, and H, so that, as before, cos ¢ gives the resolved magnetization in the (positive)
field direction. There are now two sets of critical values to be determined. The first is that

associated with a discontinuous change of cos ¢ when the magnetization is restricted to the
a1, a, plane, and is derivable from (5-12) and (5:13), which give, as the basic relation (cf.

(2:12) to (2:17)), tany, = tan*d = ¢, (5-16)

"The second is that corresponding to a deviation of 1, from the a,, a, plane, and is derivable
from (5-12) and (5-14), which give as the basic relation,

tan;ﬁ(’)“-—x %tanﬂw%tanﬁ - (5°17)

The significance of these relations is most readily appreciated from a diagram, and the
critical values ¢f (¢ = Y& +0) are accordingly plotted in figure 9 for a series of values of 7,
and also the critical values ¢, (cf. figures 4 and 5).

The behaviour to be considered in connexion with figure 9 is that for H decreasing from
a large positive value. For N, <N, for any particular angle 4, the sequence of ¢ values, so
long as I, is restricted to the 4, a, plane, is that shown by the constant field contours of
figures 4 and 5, and numerically in table 2, for the prolate spheroid. As H decreases, ¢
increases from zero, and the representative point moves vertically upwards from the line
¢ = 0 (corresponding to H = +c0), until it reaches the @, curve, after crossing the line ¢ = 4,
corresponding to H = 0. If the r value for the ellipsoid is such that the ¢ curve lies above
the ¢, curve, the course of the magnetization change is the same as that for a prolate spheroid
with N, = N;, N, = N,. If, however, the ¢} curve is below the ¢, curve, the value of H,, at
which , leaves the a;, a, plane is algebraically greater than the critical field H, for the
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630 E. C. STONER AND E. P. WOHLFARTH ON A MECHANISM

prolate spheroid (if H, is negative, it is numerically smaller than H;), and the effective
width of the hysteresis curve is correspondingly reduced.

For N, <N, the representative point moves downwards from the top of the diagram, and
¢ (right-hand scale) increases negatively from zero as H decreases from oo, the limiting
curve (not attained for the oblate spheroid) again being the ¢, curve. The constant field
contours are as in figures 4 and 5, but with the signs reversed, and with the broken curves
corresponding to energy minima.

180 | | 1 1 T T I 0
-0-5 /
150~ H-30
-0 4 ¢
0 e (Ny<Ny)
120” l /// _"’60
Ol ///
0'5 ////2
90 7 '—90
10
60— il —1-120
¢ ¢0 L7
(N <NN,) // 210
30, —-150
2 -2
1
1 (I R e B | I -180
0 30 60 90
0 .

Ficure 9. Critical angles for magnetization in principal plane of general ellipsoid. The field is in
the a;, a, plane. 0, angle between a, and positive direction of H. ¢, angle between J; and positive
direction of H. ¢,, angle at which I, cos ¢ changes discontinuously, for H decreasing, when I is
restricted to a,, a, plane. The curves, other than that labelled ¢,, give the values of ¢¥, the angle at
which [, leaves the a,, a, plane. Ny, N,, N;, demagnetization coefficients along «,, a,, a5 axes. The
numbers on the ¢¥ curves give the values of r, where r = (N;— N,)/(N, — N). ’

The magnetization vector may remain always in the principal plane, 4, a,. Thus for
N, < N, < N;, r necessarily lies between —1 and 0, and the corresponding ¢§ curves all lie
above the @, curve. The characteristics in the six possible cases are summarized in table 9.

It may be noted that the ¢¥ curves cut the ¢, curve only when r is positive, the orientation
angle 6, at which the intersection occurs, being given, from (5-16) and (5:17), by

tanf = ri. (5:18)
With 6 in the range 0 to im, and with 7 positive, the full hysteretic behaviour characteristic
of the state in which I, is restricted to the a,, a, plane is still shown for certain ranges of §:
with N, < N,, for §>tan~17%, and with N, <N, for < tan~! 7%. The difference here between
the cases (2) and (2') (as also between (1) and (1’), and between (3) and (3') is removed by
a re-designation of the axes. '
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TABLE 9. RANGE OF 7 VALUES, AND CRITICAL FIELD
CHARACTERISTICS, FOR GENERAL ELLIPSOID

Principal axes, a;, a,, a;. Field in a;, a, plane, decreasing from a positive value greater than | H,| and
|H¥|. a; axis at an angle 6 to the positive direction of the field, where 0 <0< 7. N,, N,, N;, demagnetiza-
tion coefficients along a,, ay, a5. 7= (Ny— N,)[(N;—N,). HF, critical field at which I leaves the 4, a, plane.
H,, critical field when I is restricted to the g, 4, plane.

N, <N, r range characteristics
(1) Ny <N,<N, —-1<r<0 I, in a, a, plane, all H
(2) N, <N;<N, O<r H{ negative
(3) N3<N <N, r<-—1 H positive

N,< N,
(1Y Ny<N, <N, r<—1 1, in a,, a, plane, all H
(2) N,<N;< N, O<r H¥ negative
(83") Ny;<N,<N,; —1<r<0 H} positive

Summary and discussion

The number of essentially distinct cases, whose characteristic features will now be sum-
marized, is three.

(i) H in plane containing the two longer axes ((1) and (1") of table 9). The axis associated
with the largest demagnetizing factor is normal to this plane. Over the whole range of H,
I, remains in the plane defined by the longer axes, and the variation of magnetization with
field is as calculated for the prolate spheroid.

(ii) H in plane containing the longest and shortest axes ((2) and (2’) of table 9). The axis
associated with the intermediate demagnetizing factor is normal to this plane. The critical
value, H¥, of H is negative. For | H¥ |>| H,|, the magnetization curves are the same as
those for I, confined to the plane (i.e. as in figure 6), but for | H} | <| H,|, the hysteresis
curves are correspondingly narrowed. For the limiting case of the oblate spheroid, H§ is
zero, and the downward and upward discontinuities of the hysteresis curve coincide at
H=0. :

(iii) H in plane containing the two shorter axes ((3) and (3") of table 9). The axis asso-
ciated with the smallest demagnetizing factor is normal to this plane. H§ is positive. For
H decreasing, I, leaves the plane defined by the shorter axes at 4| H§ |, passes through the
~longest axis direction at H = 0 (the resolved value of the magnetization in the plane then
being zero), and returns to the plane at H = — | H{ |.

The results given for the prolate spheroid (§4) together with the equations in this section
relating to the critical values of the parameters for which /; leaves the principal plane in
which H lies, enable the magnetization curves (i.e. the sequence of associated values of
I,cos ¢ and H in the principal plane) to be determined with numerical precision in all the
above cases, except for the range of H values in (iii) for which I, does not lie in the principal
plane. It is, however, clear that here the process is reversible and that the associated part of
the magnetization curve over the range between + | H§ | and —| H§ | passes through, and
is symmetrical about, the origin, the detailed form of the curve depending on the orientation
of the field relative to the shorter axes, and on the dimensional ratios.

Considering now an assembly of ellipsoids orientated at random, the behaviour will
correspond to an appropriate mean of that for / in the three principal planes. The major

Vor. 240. A. 78
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point which emerges from the above discussion is that it is only if the ellipsoids have the very
special form of oblate spheroids (with the sphere as a limiting form) that hysteresis effects
(as distinct from discontinuities in magnetization) will completely disappear. For ellipsoids
with three unequal axes hysteresis effects will always occur. The requirement for pro-
nounced hysteresis, and the higher coercivities, is that one of the principal axes shall be con-
siderably longer than the other two, when the hysteresis curves will be similar to those
shown in figures 6 and 7. The hysteresis and coercivity become smaller as the two longer
axes become more nearly equal (though, as mentioned in § 4, a dimensional ratio as low as
1-1 may still lead to coercivities of several hundred oersteds).

Denoting the principal axes, in order of decreasing length, by «, f, y, the general order of
magnitude of the coercivity is given by (N;—N,) 1), though for particular orientations dis-
continuities may occur at fields as great as (N, — N,) /. Apart from the wide variety in detail
in the behaviour of ellipsoids with three unequal axes, the main physically significant
possibilities seem to be adequately covered by the quantitative results which have been
given for the limiting forms of the prolate and the oblate spheroid.

6. CONDITIONS FOR SINGLE-DOMAIN ELLIPSOIDAL PARTICLES

The full development of the magnetic characteristics of ellipsoidal particles which have
been described is possible only if the magnetization is constant throughout the particle in
both magnitude and direction. Such a state does not necessarily correspond to an energy
minimum (total energy and free energy need not be distinguished in the present connexion),
for the magnetic potential energy intrinsic to the particle, or the demagnetizing field energy,
may be reduced by a non-uniform rearrangement of the magnetization directions. Any
such rearrangement, however, is accompanied by an increase in the interchange interaction,
or Weiss molecular field, energy, which is a minimum when all the effective electron spins
are parallel. By consideration of these two factors, which are of predominant importance
in the cases in which interest is centred, it is possible to obtain estimates of the critical size
of ellipsoidal particles below which the state of uniform magnetization corresponds to the
lowest attainable energy. The effect of other factors will be indicated later.

Domain structure

The problem is part of the wider problem of the formation and structure of domains in
ferromagnetics, a detailed discussion of which is outside the scope of this paper. It is the
less necessary in view of surveys of the domain problem by Brown (1940, 1945). Further, in
a recent paper by Kittel (1946), touching closely on the present particular problem, full
references are included to earlier work, the energy relations known to be relevant to domain
boundary formation are indicated, estimates are made, for particles of various shapes, of
critical sizes below which a single-domain structure is energetically favoured, and a useful
summary is given of experimental evidence bearing on the problem. The critical diameter
of a spherical particle of iron-like material is estimated as about 1-5 x 106 cm., and that of
a cylindrical rod, of dimensional ratio 10, as some five times as great. As Kittel adopts an
arbitrary value of 3 erg.cm.~2 for the energy per unit area of a boundary, these estimates,
in common with most of those which have been published, are admittedly very rough.
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Moreover, as is, in effect, explicitly stated, the general method followed is not suitable for
application to particles whose linear dimensions are comparable with the width of a Bloch
wall.

Estimates of orders of magnitude are often extremely useful. Estimates of the critical
diameter of particles as corresponding, say, to 50 atoms, are, however, of little value if
‘order of magnitude’ is broadly interpreted, and a factor ‘of order unity’ may mean a factor
which might be as low as 0-1 and as high as 10. In the following discussion, therefore, an
attempt is made to assess the precision of the estimates which are made. It will appear,
however, that precision is limited more by uncertainties in fundamental aspects of the theory
of ferromagnetism, namely in the theory of interchange interaction effects, than by the
special difficulties of the particular problem.

Interchange interaction energy in transition zones

As fundamental to the problem, and as the source of the major uncertainties, an expression
is first obtained, in a form suitable for making numerical estimates from experimental data,
of the excess interchange interaction energy associated with a variation of the direction of
magnetization. To avoid irrelevant complications, it will be assumed that the magnetization
vector, I, has no component in the z direction, and that its direction in the xy plane is
constant for z constant, making an angle ¢ with the x axis. It will further be supposed that
the crystal structure is cubic, and that the #, y, and z directions coincide with three cubic
axes. For a simple cubic lattice with one effective electron per atom, if the interchange
interaction energy is negligible except between nearest neighbours,  per atom, and for them
equal to T J, per atom pair for parallel or antiparallel spins, the energy per unit volume
is given by din2 ‘
E, = ——%nvg Jycose = ~%ano{6——a2(Ez) },

where 7, is the number of atoms per unit volume, ¢ the angle between the spin directions of
neighbouring atoms, and « the lattice constant. If the spins are parallel, the energy is
given by —}N,, I% where N, is the Weiss molecular field coefficient, so that

n,Jy = §Ny Igp = & 5Ny 15, (6:1)
and By = — 4Ny Ii+-§ Ny T2 (ddz). (6:2)
This expression is not new. It can be derived, in a more general way, from the treatment of
Landau & Lifshitz (1933), and is given, for example, by Elmore (1938). For other lattice
types, the factor % is changed. If, however, in place of the lattice constant 4, a parameter
a, is used, where a3 is the volume per atom, the numerical coeflicients (for nearest neighbour
interaction in each case) differ little. For the simple cube, body-centred cube, and face-
centred cube, they are (= 0-167), 2%/8 (= 0-198), and 43/12 (= 0-210) respectively, so
that for all cubic lattices, with one electron per atom, and nearest neighbour interaction,
the variable part of the energy may be rewritten, with good approximation,

B,y = 45N, T3a(dp)d2)". (6:3)
In general, the effective number, ¢, of electrons per atom differs from unity (e.g. for iron,

q = 2-22 and for nickel, ¢ = 0-60;), and the treatment of the interaction problem presents

difficulties which have not yet been resolved. For approximate purposes the procedure
' 78-2
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which seems simplest, and as consistent with definite knowledge as any other, is to treat
these electrons as being, on the average, uniformly distributed, and to replace the volume
per atom, a3, by the volume per electron, (a}/q), giving as a more general expression than

(6:5), By = 5Ny I3(atf)t ()2, (6-4)

If the contribution to the interchange interaction energy from pairs of atoms other than
nearest neighbours is not negligible (as it has been assumed to be in the derivation of (6-3))
the numerical coefficient in the energy expression in the form involving N, would be
increased, but not significantly unless J, fell off very slowly (or at first increased) for distances
greater than those between nearest neighbours. It may be concluded that (6-4) gives a
lower limit for the energy, which, however, is unlikely to be exceeded by a factor of more
than 2.

The next requirement is to obtain an expression for Ny, in terms of experimentally deter-
minable quantities. In the Weiss molecular field treatment (as adapted to electron spins as
carriers of the magnetic moment), and to the first approximation in more recent treatments,
whether of the Heisenberg or collective electron types,

1

Ny=f o 7 R0 = (W TR (6:5)
where p is the density, 4 the atomic weight, [, the saturation intensity at absolute zero
(equal to gup/ai), 0 the Curie temperature, and u, the Bohr magneton. The value of N,
estimated from (6-5) is probably too low. For nickel, for example, a collective electron
treatment indicates a value some two to three times as great. There are, however, so many
uncertain factors that the only reasonable course seems to be to adopt (6-5) as giving a lower
limit to N,,. The final expression for the energy,

) ¢ P S @ (d¢) (6-6)
*(qm)? gt \dz)

cnables an estimate to be made in a precise manner from the experimental data. The energy

is almost certainly not lower than the estimate, but it may be some three times as high.

More precise estimates can hardly be made without further development of the basic theory,

and even then a detailed theoretical investigation would probably be necessary for each

particular material. Writing

Ey = Cy(dg[dz)?, (6:7)

the values of C), in erg.cm. ! for iron and nickel at room temperature are 3-6 and 53 x 10~7
respectively.
Bloch walls

When interchange interaction and magneto-crystalline anisotropy jointly contribute to
the energy of a transition region, the effective width of a 180° boundary for minimum energy
may be calculated by standard methods (Becker & Déring 1939, pp. 187-192), as indicated
in §1 (i). Using the expression (6-6) for the interchange energy, and (1:3) for the magneto-
crystalline energy, the estimated effective widths for boundaries parallel to a (100) plane
are about 8-4 X 1076 cm. and 2:9 x 10~ cm. for iron and nickel respectively, and the corre-
sponding energies per unit area about 0-84 and 0-36 erg.cm.~2. These widths, which may be
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denoted by §,, are appreciably greater than the critical diameters estimated below for single
domain ellipsoidal particles, and since the ratio of the magneto-crystalline to the interchange
energy in a transition zone of width § is equal to (/8,)? justification is provided for the
initial neglect of the magneto-crystalline energy in the following treatment.

Demagnetizing field energy

The demagnetizing field energy, £, per unit volume, is equal to —H-I, where H is
derived from the scalar potential, 2, given by Poisson’s expression,

0= f (I)r) -0, dS— f (div1/r) do. (68)

(Cf. Elmore 1938.) If the magnetization is uniform, the second term is zero. From the first
term may be derived the standard expression for the energy of an ellipsoid of revolution
uniformly magnetized in the direction of the polar axis, namely

Ep = $N,I§ = 21D, I3, (6:9)

where N, is the usual demagnetization coeflicient, and D, = N,/4n. This energy is reduced
by a rearrangement of the directions of magnetization of the type already described. Taking
the centre of the ellipsoid as the co-ordinate origin, and the polar axis as the x direction, the
contribution arising from the second term remains equal to zero if /; has no z component,
and in direction is constant in the xy plane for constant z, varying only with z. The con-
tribution arising from the first term approximates to zero if the angle ¢ made by /, with x
varies from ¢ = 0 at z = —b to ¢ = 2m at z = + b, where b is the equatorial semi-axis of the
ellipsoid. (A variation in angle from 0 to 7 would leave the ellipsoid with a resultant mag-
netization along an equatorial axis, and an energy which might be greater than in the
initial state.) A distribution of magnetization of this kind, with an approximately zero
demagnetizing field energy, could not be formed unless the energy given by (6-9) is greater
than the additional interchange interaction energy associated with such a distribution, and
calculable from (6-6). It follows that a state of uniform magnetization along a polar axis is
a state of minimum energy for a particle in the form of a prolate ellipsoid if

2nD, I3 < Cyy(2m/2b)2; (6-10)

or, alternatively, as a necessary condition for the division of the particle into separate domains

by boundary formation,
w ki &

T T
20D, (qup)*q*

(6-11)
Insertion of the numerical values for iron (f = 1040°K, g, = 2-27 x 1078, ¢ = 2-22) and
nickel (f = 630°K, a; = 2-22x 1078, ¢ = 0-60;) gives the following results:

Fe: b<44-35x10"7D;% Ni: b<+1-80x 106D %, (6-12)

Critical dimensions for single-domain particles

As the dimensional ratio, m, of the prolate spheroid, varies from 1 (for the sphere) to 10,
D;t varies from 1-73 to 7-02. The critical value of b, from (6-12), varies from 0-75 x 1076 to
3:06 x 10~ %foriron, and from 3-12 x 1076 to 1-26 x 10~%for nickel. The corresponding number
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of atoms in the ellipsoid varies from 1-54 x 10° to 1-06 x 10° for iron, and from 1-17 x 107 to
8-10 x 101° for nickel. Over the whole of this range of m values the critical diameters, 2b, are
less than the widths of the usual Bloch walls, estimated above, so that the method used of
treating the ‘boundary’, or transition region as, in effect, filling the whole ellipsoid, is justified.
Moreover, inclusion of the effect of the magneto-crystalline energy would increase the
estimates of 4 by only about 309, for m = 10; for the smaller values of m the effect is
negligible. For prolate ellipsoidal particles of equatorial diameter appreciably greater than
the effective width of a Bloch wall a method similar to that used by Kittel of treating the
critical size problem would be more appropriate. For still larger ‘particles’ (e.g. ellipsoidal
specimens of quasi-homogeneous monocrystalline or polycrystalline ferromagnetic materials)
many other factors would have to be taken into consideration in any adequate treatment of
domain structure. It is not surprising that the estimates obtained here for the lower limits
of size of ‘isolated’ ferromagnetic particles (10° to 10'° atoms) below which the structure is
almost certainly single-domain should be lower than the sizes of domains required to account
for the bulk of the change of magnetization in the Barkhausen effect with ordinary materials
(say 1010 to 10!% atoms) ; for the conditions are entirely different. The important point which
is indicated by the argument is that particles may be formed of aggregates of atoms in which
the number of atoms is adequate for the full development of ferromagnetic properties so far as
intrinsic magnetization is concerned, but which are yet well below a critical size (depending
on shape) for which the formation of domain boundaries becomes energetically possible.

7. PHYSICAL BEARING OF RESULTS

The principles which have been developed are believed to be relevant to the interpretation
of the magnetic properties of ferromagnetic materials of which the composition is hetero-
geneous, and in which the more strongly ferromagnetic phase is partly or wholly in the form
of magnetically anisotropic isolated particles of such size and shape that the magnetization is
essentially uniform throughout any particle, but may change in direction under the influence
of an applied field. The size must be below a critical value, depending on shape, such that
the particle constitutes a single domain, in which boundary formation is precluded. ‘Iso-
lated’ is to be understood merely in the sense that there is sufficient magnetic discontinuity
to ensure that two or more particles do not form a unit in which common boundary formation
and movement can occur; it is not necessarily incompatible with a relatively high concen-
tration of the more ferromagnetic phase (as, for example, in powder magnets). ‘Particle’,
again, should not be taken too literally as necessarily implying a sharply defined surface,
but also as including the sub-microscopic atomic aggregates formed, for example, in the
pre-precipitation stages of dispersion hardening in many alloys.

In the derivation of the magnetization curves for single-domain particles, the treatment
has been developed deliberately in connexion almost exclusively with a magnetic anisotropy
of the particles due to shape, to avoid confusing the mathematical argument by reference
to a variety of physical applications. As indicated in § 1 (ii), however, similar characteristics
may arise from magneto-crystalline and strain anisotropy. These will first be considered,
and it will be seen that in a number of important and representative cases all the numerical
tesults which have been obtained are immediately applicable with a suitably modified
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conversion factor relating the field, A, with the non-dimensional parameter, /. Very brief
reference is then made to the main type of ferromagnetic materials for which the theoretical
results obtained appear to be of particular significance.

(1) Types of magnetic anisotropy
(a) Magneto-crystalline anisotropy. In the particular case of hexagonal cobalt, with an easy
direction of magnetization along the hexagonal axis, the magneto-crystalline energy is
given to a first approximation by , ‘
E, = Ksin?y, (7-1)
where ¥ is the angle between the magnetization vector, [, and the hexagonal axis. It is

readily seen that for a spherical single domain particle, with easy axis at an angle ¢ with the
field, the equilibrium equation is expressible as

1sin 2(¢—0) +hsing = 0, (7-2)
where h = HI,[2K, (7-3)

and ¢ is the angle between [, and H. The equation (7-2) is identical with the equation (2:10)
forming the basis of the treatment of the problem of the prolate spheroid, so that all the
tables and curves can be taken as applying to the present case, with the reinterpretation of H.
For cobalt, I,=1-4 x 103, and K=4-2 x 105, so 2 = 1 corresponds to H = 6000. This means
(see table 6) that for an assembly of spherical single domain particles of cobalt, with the
easy axes orientated at random, in a non-ferromagnetic matrix, the value of H,, the coercivity
would be about 2900.

The treatment given here does not, of course, cover cubic crystals for which the magneto-
crystalline energy is given by an expression of the type (1-3). Although a full treatment of
the magnetization curves for single-domain spherical particles in this case would be com-
plicated, it is easy to show that the coercivity, H,, is equal to aK/I,, with « depending on
direction, but having a maximum value of 2; this gives for the maximum coercivity, arising
in this way, values of about 400 for iron and 200 for nickel. The coercivity for random
orientation of the easy axes would be considerably less. It may be noted that a treatment of
rotational hysteresis of the type under consideration was given by Akulov in 1933 (see also
Akulov 1939), but as it was thought of in relation to macroscopic single crystals, in which
boundary movement processes limit the manifestation of the purely rotational character-
istics, the whole treatment has usually been regarded as having little practical applicability
(cf. Becker & Déring 1939, pp. 110, 217). It does, however, become immediately relevant
to the behaviour of single-domain particles.

(b) Strain anisotropy. For a single-domain spherical particle, of negligible magneto-
crystalline anisotropy, and isotropic in respect of the saturation magneto-striction coefficient,
A, subjected to a uniform tension, ¢, the dependence of the magneto-strain energy on the
angle, ¥, between J; and ¢ is given (cf. Becker & Déring 1939, pp. 146, 216), apart from
constant terms, by

E_ = 3losin?y. (7-4)
The equilibrium equation again assumes the basic form (7-2), with

h = HI,/3)0. (7-5)
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Thus, with the reinterpretation of #, the results obtained for shape anisotropy are im-
mediately applicable to strain anisotropy. If 1 and ¢ are of the same sign (as for nickel under
compression, and, to a first approximation, iron under tension) the magnetic characteristics
are similar to those of the single domain prolate spheroid; if A and ¢ are of opposite sign, to
those of the oblate spheroid. For an assembly of domain particles, with random orientation
of the strain directions, the magnetic characteristics would be similar to those shown in
figure 7. To obtain estimates of the values of the coercivity which may arise in this way, the
value usually taken as a probable upper limit for ¢ may be adopted, namely 200 kg.mm.2
(127 tons/sq. in.). It is unnecessary to discuss here the complications arising from the
variation of A with direction in most ferromagnetic crystals, or the experimental uncertainties
in the values. Adopting the values A = 1-8 x 107 for iron, and A = —3-3 x 10~ for nickel,
the values of H for & = 1 are obtained from (7-5) as approximately 600 and 4000 respectively.
For hexagonal cobalt (A varies with direction from approximately —0-4 to —2-0x 107%)
the value of H for 2 = 1 would be of the same order as for iron. It is particularly to be noted
that the particle itself is regarded as uniformly strained. The effect is distinct in character
from the effect of stress variations in modifying the boundary movement process which was
considered in §1 (i), and the treatment does not involve such arbitrary assumptions, for,
at least in principle, the state of strain of a particle could be related to its shape and the
material constants (including the lattice spacings) of the particle itself and the matrix in
which it is embedded (cf. Nabarro 1940).

(¢) Shape amisotropy. The magnetic characteristics arising from departures of the shape of
a particle from a spherical form have been sufficiently considered, and estimates of possible
coercivity values, in particular, have been given towards the end of §4. It is, however,
desirable to indicate the degree of shape anisotropy which is required to produce effects
comparable with those of magneto-crystalline and strain anisotropy which have just been
estimated for spherical particles. For prolate spheroids of iron, the effect of shape anisotropy
becomes more important than that of magneto-crystalline anisotropy for a dimensional
ratio, m, greater than 1-05; and than that of magneto-strain anisotropy for m>1-08. For
nickel, the crystalline effect is exceeded for m>1-09; but the maximum strain anisotropy
effect is greater than that of shape anisotropy even for the highest dimensional ratios, this
being due to the relatively high value of A and the low value for 1,. For hexagonal cobalt,
the magneto-crystalline effect is large, corresponding to a dipole rather than a quadrupole
interaction, and for a comparable shape effect a dimensional ratio of about 3 would be
required; in contrast, the strain effect is small, and comparable with that for iron.

In general, all three effects would be present to a greater or less extent, and even for those
ferromagnetic materials whose magnetic properties appear to indicate, with some certainty,
the presence of magnetically anisotropic single-domain particles, it may not be possible to
determine unambiguously the major cause of the anisotropy without detailed consideration
of fuller experimental evidence than is usually available. There are, however, two particular
points which may be mentioned in connexion with the shape effect. The first is, that if the
particles are iron-like, unless there is reason to suppose that the strain is extremely high,
coercivities of more than about 400 provide strong presumptive evidence of a prolate
spheroidal shape. The second is, that if there is reason to suppose that the particles are
either plate or disk-like, or nearly spherical, so that the shape effect alone could not give rise
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to appreciable hysteresis, coercivities of several hundred (or for certain particular materials
even several thousand) would still be possible owing to magneto-crystalline and magneto-
strain effects. Finally it must be borne in mind that in all the above estimates of the field,
the field is that which is ‘applied’ to the particle, not that which is applied to the specimen.
Owing to ordinary demagnetizing effects, and Lorentz field effects the two may differ
enormously. Attention has been directed largely to coercivity, because the measured field
at which the intensity is reduced to zero is, for obvious reasons, less subject to ‘correction’.
For an alloy containing more than one ferromagnetic phase, however, there is no simple or
general relation between the measured coercivity of the alloy and that of the separate phases
(cf. Gerlach 1938).

(ii) Ferromagnetic materials

A fairly thorough examination of the literature has shown that, while there are many
ferromagnetic materials in which the magnetic anisotropy of single-domain particles may
be contributory to the magnetic characteristics, the published papers do not usually contain
sufficient information relevant to the present problem to enable irrefutable conclusions to
be drawn. Many of the commercial alloys, in particular, are extremely complicated, and
experimental work has largely been directed to the production of alloys with desired
magnetic properties (by methods of trial which may be entirely appropriate for this purpose)
rather than to the elucidation of how those properties arise. It would be out of place to give
here a detailed discussion of even a small selection of these many materials. The theoretical
considerations in this paper are to be regarded as giving a new line of approach to some of
the problems presented by ferromagnetic materials, and not as providing a solution to all
of them. A few notes on three of the types of materials to which the treatment seems to be
particularly relevant may appropriately be given in concluding the paper.

(a) Metals and alloys containing ferromagnetic impurities. The effect of minute traces of
ferromagnetic impurities has long been appreciated as a source of error in measurements of
the magnetic properties of non-ferromagnetics, and various methods of correcting for the
effect have been developed. More recently attention has been directed to the effect of various
treatments (thermal, mechanical, heating in different atmospheres) on the state of the
impurities themselves. This work has been reviewed by Constant (1945). In ordinary
susceptibility determinations, magnetic measurements are usually made in very strong
fields, and hysteresis effects would be unimportant, though reference has sometimes been
made to the apparent magnetic ‘hardness’ of the impurities. The difficult experimental
problem of measuring the coercivity of the impurities has been attacked by several investi-
gators. For a specimen of brass (Cu, 45-5Zn, <0-01Fe) Schréder (1939) found a coercivity
of between 400 and 500, and for zinc with 1 9, aluminium, a coercivity of 570. For brass,
with a remanent intensity of only 0-08 (giving an indication of the iron content), Constant &
Formwalt (1939) found a coercivity of 500, and for silver, copper and bismuth, all with
remanent intensities less than 0-002, coercivities of 90, 200 and 300 respectively. With the
very small amounts of iron in these alloys, these coercivities are most naturally explained in
terms of the presence of single-domain particles; the smaller coercivities could arise from
magneto-crystalline or strain anisotropy, but the occurrence of measured coercivities
greater than 500 suggests that shape anisotropy is also involved.

Vor. 240. A. 79
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(b) Powder magnets. An obvious application of the general ideas of this paper is to per-
manent magnets made of ferromagnetic powders or particles pressed together with a suitable
binding medium. Magnets made of sintered powders of permanent magnet alloy material
are finding increasing practical application (cf. Hoselitz 1946), but these are of less theoretical
interest than magnets made up of small particles of, say, pure iron. If the particles are small
enough to be of single-domain character, and are sufficiently distorted from a spherical to
a prolate spheroidal form, such magnets, with a sufficiently large ‘filling factor’, offer
a theoretical possibility of (BH),,... values greatly exceeding those at present obtained.
Unfortunately, very little information could be found about these magnets, though it was
known that they had been greatly developed in France in recent years. It was not therefore
surprising that, while the present section was being written, two short papers appeared by
Néel (1947) dealing with precisely this problem; the first with the calculation of the
critical size for single domain grains, and the second with the coercive field of a ferro-
magnetic powder with anisotropic grains. Néel’s line of attack is much the same as that
adopted here, and some of the results which he quotes as having been obtained by graphical
calculation (e.g. an %, value of 0-48 for randomly orientated prolate spheroids) are in close
agreement with those found here. Itisvery satisfactory that entirely independent approaches
should have led to similar theoretical conclusions. Since the information available to Néel
on powder magnets was much more detailed than any which was previously accessible, it
will be sufficient to refer to his papers (and to others which will doubtless follow) for a fuller
treatment of this particular problem.

(¢) Hugh coercivity alloys. Among the many high coercivity alloys of the dispersion hard-
ening type the one which has been most extensively investigated is the iron-nickel-aluminium
alloy of approximate composition Fe,NiAl, which is the prototype of a number of commercial
permanent magnet alloys. The X-ray evidence obtained by Bradley & Taylor (19384) has
been interpreted by them (19384; see also Bradley 1940) as indicating that high coercivity
(values of from 500 to 600 are obtained) is associated with the initial stages of the breaking
up of a single high temperature phase into two phases, £ and f,, the first approximating to
pure iron, and the second to FeNiAl. A magnetic study of the system has been made by
Sucksmith (1939), who represents the particular transition by

FeysNiy Al +2:25(FeyNigsAlys) = 3-25(FesoNiysAly),

and gives the specific saturation intensities, o, of the two phases on the left as approximately
212 and 61 respectively. In the intermediate high coercivity stage Bradley pictures the alloy
as containing iron-rich ‘islands’, too small to be regarded as a precipitated phase in the
usual sense, and retaining practically the same lattice spacing as in the original state, and
so ‘under a condition of immense strain’. This general picture is entirely compatible with
an interpretation of the kind here suggested in terms of magnetically anisotropic single
domain particles in a less ferromagnetic matrix; the type of strain required on the basis of
this treatment (in contrast to the boundary movement treatment) is consistent with Bradley’s
tentative conclusions. The high coercivity suggests again that shape anisotropy as well as
magneto-strain anisotropy is probably involved, but no definite conclusions can be drawn
from the available evidence. It may perhaps be suggested, in connexion with the good
permanent magnet qualities of this type of alloy, that the single-domain character of the
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more ferromagnetic segregates is rendered possible by the excess of the less ferromagnetic
phase, so that high coercivity can be developed; at the same time the main phase is suffi-
ciently ferromagnetic to contribute significantly to the remanence of the alloy. It should
be mentioned that Bradley’s scheme of the constitution of the alloy is not accepted in detail
by all other workers in the field (e.g. Snoek 1939), though the single domain particle inter-
pretation of the magnetic properties seems equally compatible with the alternative scheme.
Few conclusions seem to have been drawn from microphotographic studies of this alloy,
though some of the photographs given by Kiuti (1941) appear to indicate the occurrence,
under some conditions, of precipitate particles in the form of ellipsoids.

The preceding paragraph illustrates the fact that it is not possible to discuss adequately
even one alloy with brevity; each alloy raises its own complex of problems. It is felt that it
is better to leave the theoretical treatment of this paper to be taken into consideration in
future studies of the magnetic properties of alloys, rather than to give here what would
necessarily be an inadequate discussion of a large number of particular examples. It is,
however, proper to state that there are a considerable number of alloys for which coercivities
much higher than 600 have been reported, as in the systems Fe-Pt (1750), Co-Pt (3650),
Fe-Nd (4300), Fe-Ag (5000), Ag-Al-Mn (5000); it seems very difficult to explain such high
values along lines other than those suggested here.

There is, finally, one remarkable effect which should be mentioned in relation to the
present treatment, namely the effect of cooling in a magnetic field on alloys of the alcomax
or ticonal types. Demagnetization curves and some particulars of composition and treatment
are given in a recent review article by Hoselitz (1946). The salient effect of cooling in a field
is that in the direction in which the field has been applied the remanence, coercivity, and
‘fullness’ are all increased, and in a perpendicular direction decreased. Typical values for
Alcomax II (Al8, Nill, Co24, Cué, rest Fe) are: along the field, B, 12400, zH_ 570,
(BH),,ax.4'3 X 108; perpendicular, B,4600, pH 330, (BH),,. 0-43x 105 The difference
in the demagnetization curves in the two perpendicular directions is strikingly similar to
the difference between the curves for single domain particles in the form of prolate spheroids
with the easy directions approximately along the field (say the curve for § = 10° in figure 6)
and perpendicular to it (¢ = 80°). This suggests at once that cooling in a magnetic field
favours a segregation of single domain particles or ‘islands’ with an easy direction of mag-
netization in the direction of the field. This is intelligible on energetic grounds, for the
favoured orientation of the magnetically anisotropic segregate is that corresponding to the
lowest energy. This would hold no less for magneto-crystalline or magneto-strain anisotropy
than for shape anisotropy. There is an attractive simplicity in the idea that the segregates
take the form of prolate spheroids with the long axes in the direction of the field. Far too
little is known, however, about the segregation process, and the detailed constitution of
the alloy after the magnetic treatment for a definite conclusion to be drawn at present about
the type of magnetic anisotropy primarily involved. It must be sufficient, here as elsewhere,
to have indicated directions which it may prove interesting to follow in future investigations.
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